On the nanoindentation hardness of Cu-Zr-Al/Cu nanolaminates

被引:10
作者
Ma, Y. [1 ]
Peng, G. J. [1 ]
Chen, H. [1 ]
Jiang, W. F. [1 ]
Zhang, T. H. [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanolaminates; Nanoindentation; Amorphous alloy; Hardness; SHEAR TRANSFORMATION ZONE; METALLIC GLASSY FILMS; MECHANICAL-BEHAVIOR; CREEP-BEHAVIOR; THIN-FILMS; SIZE; STRENGTH; DEFORMATION; MULTILAYERS; PLASTICITY;
D O I
10.1016/j.jnoncrysol.2017.12.045
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanolaminates consisting of individual amorphous Cu-Zr-Al layers and nanocrystalline Cu layers on Si substrates were prepared by alternatively magnetron sputtering and hardness measurements were conducted upon nanoindentation with a standard Berkovich indenter. Indentation hardness showed a strong size effect in single Cu-Zr-Al film, its decline trend was slower in the nanolaminates with thinner amorphous layers. While experimental hardness was obviously below the expected rule-of-mixture value for all the nanolaminates. Finite element modelling (FEM) analysis was performed in each sample to explore stress distribution beneath indenter. A higher proportion of Cu layers has been involved into plastic region than the nominal value. Besides, interfacial barrier strength was estimated for each sample. The experimental results could be well described by the modified rule of mixture integrated with true ratio of Cu to Cu-Zr-Al in plastic region and the interface strengthen effect.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 38 条
[1]   Predicting grid-size-dependent fracture strains of DP980 with a microstructure-based post-necking model [J].
Cheng, G. ;
Hu, X. H. ;
Choi, K. S. ;
Sun, X. .
INTERNATIONAL JOURNAL OF FRACTURE, 2017, 207 (02) :211-227
[2]   Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests [J].
Cheng, G. ;
Choi, K. S. ;
Hu, X. ;
Sun, X. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 652 :384-395
[3]   Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties [J].
Cheng, Guang ;
Sun, Xin ;
Wang, Yuxin ;
Tay, See Leng ;
Gao, Wei .
SURFACE & COATINGS TECHNOLOGY, 2017, 310 :43-50
[4]   Nanoindentation response of piezoelectric nano-islands [J].
Cheng, Guang ;
Sriram, Sharath ;
Bhaskaran, Madhu ;
Venkatesh, T. A. .
APPLIED PHYSICS LETTERS, 2014, 105 (12)
[5]   Nanoindentation response of anisotropic piezoelectric materials [J].
Cheng, Guang ;
Venkatesh, T. A. .
PHILOSOPHICAL MAGAZINE LETTERS, 2012, 92 (06) :278-287
[6]   Indentation size effect and shear transformation zone size in a bulk metallic glass in two different structural states [J].
Choi, In-Chul ;
Zhao, Yakai ;
Kim, Yong-Jae ;
Yoo, Byung-Gil ;
Suh, Jin-Yoo ;
Ramamurty, Upadrasta ;
Jang, Jae-il .
ACTA MATERIALIA, 2012, 60 (19) :6862-6868
[7]  
Cui Y. W., 2016, SCI REP, P6
[8]   Indentation size effect in metallic materials:: Correcting for the size of the plastic zone [J].
Durst, K ;
Backes, B ;
Göken, M .
SCRIPTA MATERIALIA, 2005, 52 (11) :1093-1097
[9]   Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates [J].
Guo, Wei ;
Jaegle, Eric ;
Yao, Jiahao ;
Maier, Verena ;
Korte-Kerzel, Sandra ;
Schneider, Jochen M. ;
Raabe, Dierk .
ACTA MATERIALIA, 2014, 80 :94-106
[10]   Shear-Induced Mixing Governs Codeformation of Crystalline-Amorphous Nanolaminates [J].
Guo, Wei ;
Jaegle, Eric A. ;
Choi, Pyuck-Pa ;
Yao, Jiahao ;
Kostka, Aleksander ;
Schneider, Jochen M. ;
Raabe, Dierk .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)