Reaction Pathway Analysis of Ethyl Levulinate and 5-Ethoxymethylfurfural from D-Fructose Acid Hydrolysis in Ethanol

被引:87
作者
Flannelly, Thomas [1 ]
Dooley, Stephen [1 ]
Leahy, J. J. [1 ]
机构
[1] Univ Limerick, Dept Chem & Environm Sci, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
SOLID-ACID; CATALYZED CONVERSION; PLATFORM MOLECULES; FURFURYL ALCOHOL; FUEL ADDITIVES; WHEAT-STRAW; D-GLUCOSE; ISOMERIZATION; TRANSFORMATION; CHEMICALS;
D O I
10.1021/acs.energyfuels.5b01481
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study uses numerical modeling to provide a mechanistic discussion of the synthesis of the advanced biofuel candidates, ethyl levulinate and 5-ethoxymethylfurfural, from alpha/beta-D-fructopyranose (d-fructose) in a condensed phase homogeneous ethanol system at 351 K catalyzed by hydrogen cations. A mechanistic comprehension is pursued by detailed measurements of reactant, intermediate, and product species temporal evolutions, as a function of H2SO4 (0.09, 0.22, and 0.32 mol/L) and D-fructose (0.14, 0.29, and 0.43 mol/L) concentrations, also considering the addition of water to the ethanol media (0, 12, and 24 mass % of water in ethanol). D-Fructose, 5-hydroxymethylfurfural, 5-ethoxymethylfurfural, ethyl levulinate, and several other intermediate species are quantified as major species fractions at 45-85% of the initial D-fructose mass. To inform the mechanistic discussion, mass-conserved chemically authentic kinetic models and empirical rate constants are derived, each assuming a first-order relationship to the hydrogen cation concentration. The optimal synthesized fractions of ethyl levulinate and 5-ethoxymethylfurfural considered as fuel components achieve a mass yield of 63% with respect to the fructose mass and a volumetric energy valorization (Delta H-combustion, kcal/mL) of 215% with respect to the ethanol consumed, indicating the viability of the synthesis.
引用
收藏
页码:7554 / 7565
页数:12
相关论文
共 51 条
[1]   Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel [J].
Alam, Md. Imteyaz ;
De, Sudipta ;
Dutta, Saikat ;
Saha, Basudeb .
RSC ADVANCES, 2012, 2 (17) :6890-6896
[2]   COMPOSITION AND CONFORMATION OF SUGARS IN SOLUTION [J].
ANGYAL, SJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1969, 8 (03) :157-&
[3]   Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods [J].
Assary, Rajeev S. ;
Kim, Taejin ;
Low, John J. ;
Greeley, Jeff ;
Curtiss, Larry A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (48) :16603-16611
[4]   Comparison of Sugar Molecule Decomposition through Glucose and Fructose: A High-Level Quantum Chemical Study [J].
Assary, Rajeev S. ;
Curtiss, Larry A. .
ENERGY & FUELS, 2012, 26 (02) :1344-1352
[5]   Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates [J].
Balakrishnan, Madhesan ;
Sacia, Eric R. ;
Bell, Alexis T. .
GREEN CHEMISTRY, 2012, 14 (06) :1626-1634
[6]  
Bell R.P., 1973, The proton in chemistry, V1
[7]   Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose [J].
Bermejo-Deval, Ricardo ;
Orazov, Marat ;
Gounder, Rajamani ;
Hwang, Son-Jong ;
Davis, Mark E. .
ACS CATALYSIS, 2014, 4 (07) :2288-2297
[8]   Converting fructose to 5-hydroxymethylfurfural: a quantum mechanics/molecular mechanics study of the mechanism and energetics [J].
Caratzoulas, Stavros ;
Vlachos, Dionisios G. .
CARBOHYDRATE RESEARCH, 2011, 346 (05) :664-672
[9]   Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing [J].
Carlos Serrano-Ruiz, Juan ;
Luque, Rafael ;
Sepulveda-Escribano, Antonio .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (11) :5266-5281
[10]   Production of ethyl levulinate by direct conversion of wheat straw in ethanol media [J].
Chang, Chun ;
Xu, Guizhuan ;
Jiang, Xiaoxian .
BIORESOURCE TECHNOLOGY, 2012, 121 :93-99