Plasma response to electron energy filter in large volume plasma device

被引:10
|
作者
Sanyasi, A. K. [1 ]
Awasthi, L. M. [1 ]
Mattoo, S. K. [1 ]
Srivastava, P. K. [1 ]
Singh, S. K. [1 ]
Singh, R. [1 ]
Kaw, P. K. [1 ]
机构
[1] Inst Plasma Res, Gandhinagar 382428, Gujarat, India
关键词
SIMON-HOH INSTABILITY; DRIFT WAVE TURBULENCE; NONLINEAR EVOLUTION; DOUBLE-LAYERS; COLLISIONLESS; TRANSPORT; FLOW; SIMULATION; DYNAMICS; PROBE;
D O I
10.1063/1.4848740
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An electron energy filter (EEF) is embedded in the Large Volume Plasma Device plasma for carrying out studies on excitation of plasma turbulence by a gradient in electron temperature (ETG) described in the paper of Mattoo et al. [S. K. Mattoo et al., Phys. Rev. Lett. 108, 255007 (2012)]. In this paper, we report results on the response of the plasma to the EEF. It is shown that inhomogeneity in the magnetic field of the EEF switches on several physical phenomena resulting in plasma regions with different characteristics, including a plasma region free from energetic electrons, suitable for the study of ETG turbulence. Specifically, we report that localized structures of plasma density, potential, electron temperature, and plasma turbulence are excited in the EEF plasma. It is shown that structures of electron temperature and potential are created due to energy dependence of the electron transport in the filter region. On the other hand, although structure of plasma density has origin in the particle transport but two distinct steps of the density structure emerge from dominance of collisionality in the source-EEF region and of the Bohm diffusion in the EEF-target region. It is argued and experimental evidence is provided for existence of drift like flute Rayleigh-Taylor in the EEF plasma. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Performance of large electron energy filter in large volume plasma device
    Singh, S. K.
    Srivastava, P. K.
    Awasthi, L. M.
    Mattoo, S. K.
    Sanyasi, A. K.
    Singh, R.
    Kaw, P. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (03)
  • [2] Turbulence and transport by electron temperature gradient driven instability in large volume plasma device
    Awasthi, L. M.
    Srivastav, Prabhakar
    Singh, S. K.
    Sanyasi, A. K.
    Srivastava, P. K.
    Singh, Rameswar
    Sugandhi, R.
    Singh, R.
    Mattoo, S. K.
    REVIEWS OF MODERN PLASMA PHYSICS, 2024, 8 (01):
  • [3] A 5 kA pulsed power supply for inductive and plasma loads in large volume plasma device
    Srivastava, P. K.
    Singh, S. K.
    Sanyasi, A. K.
    Awasthi, L. M.
    Mattoo, S. K.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (07)
  • [4] Radiofrequency Diagnostic of the Decaying Plasma in the "Gigantic" Coaxial Line at the Large Plasma Device
    Zudin, I. Yu.
    Kochedykov, V. V.
    Gushchin, M. E.
    Strikovskiy, A. V.
    Korobkov, S. V.
    Katkov, A. N.
    Petrova, I. A.
    Vershinin, I. M.
    PLASMA PHYSICS REPORTS, 2024, 50 (02) : 225 - 236
  • [5] Impact of the electron density and temperature gradient on drift-wave turbulence in the Large Plasma Device
    Perks, Conor
    Mordijck, Saskia
    Carter, Troy
    Van Compernolle, Bart
    Vincena, Stephen
    Rossi, Giovanni
    Schaffner, David
    JOURNAL OF PLASMA PHYSICS, 2022, 88 (04)
  • [6] Isotope effects on energy, particle transport and turbulence in electron cyclotron resonant heating plasma of the Large Helical Device
    Tanaka, K.
    Ohtani, Y.
    Nakata, M.
    Warmer, F.
    Tsujimura, T.
    Takemura, Y.
    Kinoshita, T.
    Takahashi, H.
    Yokoyama, M.
    Seki, R.
    Igami, H.
    Yoshimura, Y.
    Kubo, S.
    Shimozuma, T.
    Tokuzawa, T.
    Akiyama, T.
    Yamada, I
    Yasuhara, R.
    Funaba, H.
    Yoshinuma, M.
    Ida, K.
    Goto, M.
    Motojima, G.
    Shoji, M.
    Masuzaki, S.
    Michael, C. A.
    Vacheslavov, L. N.
    Osakabe, M.
    Morisaki, T.
    NUCLEAR FUSION, 2019, 59 (12)
  • [7] Numerical simulation and analysis of plasma turbulence the Large Plasma Device
    Umansky, M. V.
    Popovich, P.
    Carter, T. A.
    Friedman, B.
    Nevins, W. M.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [8] The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics
    Gekelman, W.
    Pribyl, P.
    Lucky, Z.
    Drandell, M.
    Leneman, D.
    Maggs, J.
    Vincena, S.
    Van Compernolle, B.
    Tripathi, S. K. P.
    Morales, G.
    Carter, T. A.
    Wang, Y.
    DeHaas, T.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02)
  • [9] Plasma parameters and electron energy distribution functions in a magnetically focused plasma
    Samuell, C. M.
    Blackwell, B. D.
    Howard, J.
    Corr, C. S.
    PHYSICS OF PLASMAS, 2013, 20 (03)
  • [10] Turbulence and transport in mirror geometries in the Large Plasma Device
    Travis, Phil
    Carter, Troy
    JOURNAL OF PLASMA PHYSICS, 2025, 91 (01)