A computational study of the weak Galerkin method for second-order elliptic equations

被引:111
作者
Mu, Lin [1 ]
Wang, Junping [2 ]
Wang, Yanqiu [3 ]
Ye, Xiu [4 ]
机构
[1] Univ Arkansas, Dept Appl Sci, Little Rock, AR 72204 USA
[2] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
[3] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[4] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
基金
美国国家科学基金会;
关键词
Finite element methods; Weak Galerkin methods; Elliptic equations;
D O I
10.1007/s11075-012-9651-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye (2011) for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established in Wang and Ye (2011). The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.
引用
收藏
页码:753 / 777
页数:25
相关论文
共 14 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[3]  
Bahriawati C., 2005, COMPUT METHODS APPL, V5, P333, DOI DOI 10.2478/CMAM-2005-0016)
[4]   2 FAMILIES OF MIXED FINITE-ELEMENTS FOR 2ND ORDER ELLIPTIC PROBLEMS [J].
BREZZI, F ;
DOUGLAS, J ;
MARINI, LD .
NUMERISCHE MATHEMATIK, 1985, 47 (02) :217-235
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]   ANALYSIS OF THE DPG METHOD FOR THE POISSON EQUATION [J].
Demkowicz, L. ;
Gopalakrishnan, J. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1788-1809
[7]   A Class of Discontinuous Petrov-Galerkin Methods. II. Optimal Test Functions [J].
Demkowicz, L. ;
Gopalakrishnan, J. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (01) :70-105
[8]   A class of discontinuous Petrov-Galerkin methods. Part I: The transport equation [J].
Demkowicz, L. ;
Gopalakrishnan, J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1558-1572
[9]  
Kellog R.B., 1976, APPL ANAL, V4, P101
[10]  
Lin M., ARXIV12043655V1MATHN