LIMITS ON ALTERNATION TRADING PROOFS FOR TIME-SPACE LOWER BOUNDS

被引:5
作者
Buss, Samuel R. [1 ]
Williams, Ryan [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Satisfiability; alternation trading proofs; time space trade-offs; lower bounds; TRADEOFFS;
D O I
10.1007/s00037-015-0104-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper characterizes alternation trading-based proofs that the Boolean satisfiability problem is not in the time- and space-bounded class DTISP(n(c), n(is an element of)), for various values c < 2 and is an element of < 1. We characterize exactly what can be proved in the is an element of = 0 case with currently known methods and prove the conjecture of Williams that c = 2 cos(pi/ 7) is optimal for this. For time- space trade-offs and lower bounds on satisfiability, we give a theoretical and computational analysis of the alternation trading proofs for 0 < is an element of < 1.
引用
收藏
页码:533 / 600
页数:68
相关论文
共 18 条
[1]  
[Anonymous], 1962, THESIS PRINCETON U
[2]  
Baker T., 1975, SIAM Journal on Computing, V4, P431, DOI 10.1137/0204037
[3]   Time-space lower bounds for the polynomial-time hierarchy on randomized machines [J].
Diehl, Scott ;
van Melkebeek, Dieter .
SIAM JOURNAL ON COMPUTING, 2006, 36 (03) :563-594
[4]   Time-space lower bounds for satistiability [J].
Fortnow, L ;
Lipton, R ;
van Melkebeek, D ;
Viglas, A .
JOURNAL OF THE ACM, 2005, 52 (06) :835-865
[5]   Time-space tradeoffs for nondeterministic computation [J].
Fortnow, L ;
van Melkebeek, D .
15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2000, :2-13
[6]   Nondeterministic polynomial time versus nondeterministic logarithmic space: Time-space tradeoffs for satisfiability [J].
Fortnow, L .
TWELFTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1997, :52-60
[7]   TOWARDS SEPARATING NONDETERMINISM FROM DETERMINISM [J].
KANNAN, R .
MATHEMATICAL SYSTEMS THEORY, 1984, 17 (01) :29-45
[8]  
Lipton R., 1999, Proceedings 40th FOCS, P459
[9]  
Nepomnjascij V., 1970, SOV MATH DOKL, V6, P1462
[10]   Natural proofs [J].
Razborov, AA ;
Rudich, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :24-35