Modulus-based synchronous multisplitting iteration methods for linear complementarity problems

被引:146
|
作者
Bai, Zhong-Zhi [1 ]
Zhang, Li-Li [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100190, Peoples R China
关键词
linear complementarity problem; modulus method; matrix multisplitting; successive relaxation; convergence; CONJUGATE-GRADIENT METHOD; MATRIX; CONVERGENCE; ALGORITHM; SPLITTINGS;
D O I
10.1002/nla.1835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By an equivalent reformulation of the linear complementarity problem into a system of fixed-point equations, we construct modulus-based synchronous multisplitting iteration methods based on multiple splittings of the system matrix. These iteration methods are suitable to high-speed parallel multiprocessor systems and include the multisplitting relaxation methods such as Jacobi, GaussSeidel, successive overrelaxation, and accelerated overrelaxation of the modulus type as special cases. We establish the convergence theory of these modulus-based synchronous multisplitting iteration methods and their relaxed variants when the system matrix is an H+-matrix. Numerical results show that these new iteration methods can achieve high parallel computational efficiency in actual implementations. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:425 / 439
页数:15
相关论文
共 50 条
  • [1] A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Weiwei Xu
    Lei Zhu
    Xiaofei Peng
    Hao Liu
    Junfeng Yin
    Numerical Algorithms, 2020, 85 : 1 - 21
  • [2] A class of modified modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Xu, Weiwei
    Zhu, Lei
    Peng, Xiaofei
    Liu, Hao
    Yin, Junfeng
    NUMERICAL ALGORITHMS, 2020, 85 (01) : 1 - 21
  • [3] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Zheng, Hua
    Zhang, Yongxiong
    Lu, Xiaoping
    Vong, Seakweng
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 711 - 729
  • [4] Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems
    Zhong-Zhi Bai
    Li-Li Zhang
    Numerical Algorithms, 2013, 62 : 59 - 77
  • [5] Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems
    Bai, Zhong-Zhi
    Zhang, Li-Li
    NUMERICAL ALGORITHMS, 2013, 62 (01) : 59 - 77
  • [6] TWO-STEP MODULUS-BASED SYNCHRONOUS MULTISPLITTING ITERATION METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Lili
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (01): : 100 - 112
  • [7] Modulus-based synchronous multisplitting iteration methods for large sparse vertical linear complementarity problems
    Hua Zheng
    Yongxiong Zhang
    Xiaoping Lu
    Seakweng Vong
    Numerical Algorithms, 2023, 93 : 711 - 729
  • [8] New convergence proofs of modulus-based synchronous multisplitting iteration methods for linear complementarity problems
    Zhang, Li-Li
    Zhang, Yun-Peng
    Ren, Zhi-Ru
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 481 : 83 - 93
  • [9] Modulus-Based Synchronous Multisplitting Iteration Methods for a Restricted Class of Nonlinear Complementarity Problems
    Wu, Yu-Jiang
    Yan, Gui-Lin
    Yang, Ai-Li
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) : 709 - 726
  • [10] Modulus-based Synchronous Multisplitting Iteration Methods for an Implicit Complementarity Problem
    Li, Chen-Liang
    Hong, Jun-Tao
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 363 - 375