Functional Subdomains within Human FFA

被引:40
作者
Cukur, Tolga [1 ,4 ]
Huth, Alexander G. [1 ]
Nishimoto, Shinji [1 ]
Gallant, Jack L. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Program Bioengn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Psychol, Berkeley, CA 94720 USA
[4] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
基金
美国国家科学基金会;
关键词
FUSIFORM FACE AREA; HUMAN VISUAL-CORTEX; HUMAN BRAIN; FACIAL IDENTITY; NATURAL IMAGES; OBJECTS; ORGANIZATION; REPRESENTATIONS; INFORMATION; PERCEPTION;
D O I
10.1523/JNEUROSCI.1259-13.2013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The fusiform face area (FFA) is a well-studied human brain region that shows strong activation for faces. In functional MRI studies, FFA is often assumed to be a homogeneous collection of voxels with similar visual tuning. To test this assumption, we used natural movies and a quantitative voxelwise modeling and decoding framework to estimate category tuning profiles for individual voxels within FFA. We find that the responses in most FFA voxels are strongly enhanced by faces, as reported in previous studies. However, we also find that responses of individual voxels are selectively enhanced or suppressed by a wide variety of other categories and that these broader tuning profiles differ across FFA voxels. Cluster analysis of category tuning profiles across voxels reveals three spatially segregated functional subdomains within FFA. These subdomains differ primarily in their responses for nonface categories, such as animals, vehicles, and communication verbs. Furthermore, this segregation does not depend on the statistical threshold used to define FFA from responses to functional localizers. These results suggest that voxels within FFA represent more diverse information about object and action categories than generally assumed.
引用
收藏
页码:16748 / 16766
页数:19
相关论文
共 65 条
[1]   Visual objects in context [J].
Bar, M .
NATURE REVIEWS NEUROSCIENCE, 2004, 5 (08) :617-629
[2]  
Ben-Hur Asa, 2002, Pac Symp Biocomput, P6
[3]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[4]  
DeAngelis GC, 1999, J NEUROSCI, V19, P4046
[5]   Domain specificity in visual cortex [J].
Downing, P. E. ;
Chan, A. W. -Y. ;
Peelen, M. V. ;
Dodds, C. M. ;
Kanwisher, N. .
CEREBRAL CORTEX, 2006, 16 (10) :1453-1461
[6]   Retinotopic organization in human visual cortex and the spatial precision of functional MRI [J].
Engel, SA ;
Glover, GH ;
Wandell, BA .
CEREBRAL CORTEX, 1997, 7 (02) :181-192
[7]  
Fanti C, 2004, ADV NEUR IN, V16, P1603
[8]   A critique of functional localisers [J].
Friston, K. J. ;
Rotshtein, P. ;
Geng, J. J. ;
Sterzer, P. ;
Henson, R. N. .
NEUROIMAGE, 2006, 30 (04) :1077-1087
[9]   COLUMNS FOR VISUAL FEATURES OF OBJECTS IN MONKEY INFEROTEMPORAL CORTEX [J].
FUJITA, I ;
TANAKA, K ;
ITO, M ;
CHENG, K .
NATURE, 1992, 360 (6402) :343-346
[10]  
Gallant JL, 2012, COMPUT NEUROSCI-MIT, P163