An EM Algorithm for Markov Modulated Markov Processes

被引:21
作者
Ephraim, Yariv [1 ]
Roberts, William J. J. [2 ]
机构
[1] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
[2] Atlantic Coast Technol Inc, Silver Spring, MD 20904 USA
关键词
Expectation-maximization (EM) algorithm; Markov modulated Markov processes; Markov modulated Poisson processes; POISSON PROCESSES; ARRIVAL PROCESS;
D O I
10.1109/TSP.2008.2007919
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An expectation-maximization (EM) algorithm for estimating the parameter of it Markov modulated Markov process in the maximum likelihood sense is developed. This is a doubly stochastic random process with an underlying continuous-time finite-state homogeneous Markov chain. Conditioned on that chain, the observable process is a continuous-time finite-state nonhomogeneous Markov chain. The generator of the observable process at any given time is determined by the state of the underlying Markov chain at that time. The parameter of the process comprises the set or generators for file underlying and conditional Markov chains. The proposed approach generalizes an earlier approach by Ryden for estimating the parameter of a Markov modulated Poisson process.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 32 条
[1]  
ALBERT A, 1962, ANN MATH STAT, V38, P727
[2]  
Asmussen S, 1996, SCAND J STAT, V23, P419
[3]   CONTINUOUS-TIME MARKOV-CHAINS IN A RANDOM ENVIRONMENT, WITH APPLICATIONS TO ION-CHANNEL MODELING [J].
BALL, F ;
MILNE, RK ;
YEO, GF .
ADVANCES IN APPLIED PROBABILITY, 1994, 26 (04) :919-946
[4]  
Billingsley P., 1961, STAT INFERENCE MARKO
[5]  
Bryant D., 2007, MATH EVOLUTION PHYLO
[6]   MARKOV RENEWAL THEORY - SURVEY [J].
CINLAR, E .
MANAGEMENT SCIENCE SERIES A-THEORY, 1975, 21 (07) :727-752
[7]   PARAMETER-ESTIMATION OF PARTIALLY OBSERVED CONTINUOUS-TIME STOCHASTIC-PROCESSES VIA THE EM ALGORITHM [J].
DEMBO, A ;
ZEITOUNI, O .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 23 (01) :91-113
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]  
Elliott RJ., 1994, Hidden Markov Models: Estimation and Control
[10]   Hidden Markov processes [J].
Ephraim, Y ;
Merhav, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (06) :1518-1569