The Data Vortex Optical Packet Switched Interconnection Network

被引:73
作者
Liboiron-Ladouceur, Odile [3 ]
Shacham, Assaf [1 ]
Small, Benjamin A. [2 ]
Lee, Benjamin G. [2 ]
Wang, Howard [2 ]
Lai, Caroline P. [2 ]
Biberman, Aleksandr [2 ]
Bergman, Keren [2 ]
机构
[1] Aprius Inc, Sunnyvale, CA 94085 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
[3] McGill Univ, Photon Syst Grp, Montreal, PQ, Canada
基金
美国国家科学基金会;
关键词
Interconnection networks (multiprocessor); optical interconnections; packet switching; photonic switching systems; wavelength-division multiplexing;
D O I
10.1109/JLT.2007.913739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A complete review of the data vortex optical packet switched (OPS) interconnection network architecture is presented. The distributed multistage network topology is based on a banyan structure and incorporates a deflection routing scheme ideally suited for implementation with optical components. An implemented 12-port system prototype employs broadband semiconductor optical amplifier switching nodes and is capable of successfully routing multichannel wavelength-division multi-plexing packets while maintaining practically error-free signal integrity (BER < 10(-12)) with median latencies of 110 us. Packet contentions are resolved without the use of optical buffers via a distributed deflection routing control scheme. The entire payload path in the optical domain exhibits a capacity of nearly 1 Tb/s. Further experimental measurements investigate the OPS interconnection network's flexibility and robustness in terms of optical power dynamic range and network timing. Subsequent experimental investigations support the physical layer scalability of the implemented architecture and serve to substantiate the merits of the data vortex OPS network architectural paradigm. Finally, modified design considerations that aim to increase the network throughput and device-level performance are presented.
引用
收藏
页码:1777 / 1789
页数:13
相关论文
共 32 条
[1]   A SURVEY OF MODERN HIGH-PERFORMANCE SWITCHING TECHNIQUES [J].
AHMADI, H ;
DENZEL, WE .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1989, 7 (07) :1091-1103
[2]   THE SPLASH-2 SOFTWARE ENVIRONMENT [J].
ARNOLD, JM .
JOURNAL OF SUPERCOMPUTING, 1995, 9 (03) :277-290
[3]  
Dally William James, 2004, Principles and Practices of Interconnection Networks
[4]   The noise figure of optical amplifiers [J].
Haus, HA .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10 (11) :1602-1604
[5]   The data vortex, an all optical path multicomputer interconnection network [J].
Hawkins, Cory ;
Small, Benjamin A. ;
Wills, D. Scott ;
Bergman, Keren .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2007, 18 (03) :409-420
[6]   Impact of number of angles on the performance of the data vortex optical interconnection network [J].
Hawkins, Cory ;
Wills, D. Scott .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (09) :3288-3294
[7]   All-optical Data Vortex node using an MZI-SOA switch array [J].
Jung, Hyun-Do ;
Monroy, Idelfonso Tafur ;
Koonen, A. M. J. ;
Tangdiongga, Eduward .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) :1777-1779
[8]  
LEE BG, 2006, P EUR C OPT COMM SEP
[9]   Bit-parallel message exchange and data recovery in optical packet switched interconnection networks [J].
Liboiron-Ladouceur, O ;
Gray, C ;
Keezer, DC ;
Bergman, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (5-8) :779-781
[10]   Physical layer scalability of WDM optical packet interconnection networks [J].
Liboiron-Ladouceur, O ;
Small, BA ;
Bergman, K .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :262-270