Spatial Prediction of Current and Future Flood Susceptibility: Examining the Implications of Changing Climates on Flood Susceptibility Using Machine Learning Models

被引:15
|
作者
Gharakhanlou, Navid Mahdizadeh [1 ]
Perez, Liliana [1 ]
机构
[1] Univ Montreal, Dept Geog, Lab Environm Geosimulat LEDGE, 1375 Ave Therese Lavoie Roux, Montreal, PQ H2V 0B3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
climate change; machine learning (ML); geographical information systems (GIS); flood susceptibility mapping; natural hazards; ARTIFICIAL NEURAL-NETWORK; SUPPORT VECTOR MACHINE; INTELLIGENCE APPROACH; FREQUENCY RATIO; CATCHMENT; REGRESSION; IMPACT; VALIDATION; MANAGEMENT; SELECTION;
D O I
10.3390/e24111630
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The main aim of this study was to predict current and future flood susceptibility under three climate change scenarios of RCP2.6 (i.e., optimistic), RCP4.5 (i.e., business as usual), and RCP8.5 (i.e., pessimistic) employing four machine learning models, including Gradient Boosting Machine (GBM), Random Forest (RF), Multilayer Perceptron Neural Network (MLP-NN), and Naive Bayes (NB). The study was conducted for two watersheds in Canada, namely Lower Nicola River, BC and Loup, QC. Three statistical metrics were used to validate the models: Receiver Operating Characteristic Curve, Figure of Merit, and F1-score. Findings indicated that the RF model had the highest accuracy in providing the flood susceptibility maps (FSMs). Moreover, the provided FSMs indicated that flooding is more likely to occur in the Lower Nicola River watershed than the Loup watershed. Following the RCP4.5 scenario, the area percentages of the flood susceptibility classes in the Loup watershed in 2050 and 2080 have changed by the following percentages from the year 2020 and 2050, respectively: Very Low = -1.68%, Low = -5.82%, Moderate = +6.19%, High = +0.71%, and Very High = +0.6% and Very Low = -1.61%, Low = +2.98%, Moderate = -3.49%, High = +1.29%, and Very High = +0.83%. Likewise, in the Lower Nicola River watershed, the changes between the years 2020 and 2050 and between the years 2050 and 2080 were: Very Low = -0.38%, Low = -0.81%, Moderate = -0.95%, High = +1.72%, and Very High = +0.42% and Very Low = -1.31%, Low = -1.35%, Moderate = -1.81%, High = +2.37%, and Very High = +2.1%, respectively. The impact of climate changes on future flood-prone places revealed that the regions designated as highly and very highly susceptible to flooding, grow in the forecasts for both watersheds. The main contribution of this study lies in the novel insights it provides concerning the flood susceptibility of watersheds in British Columbia and Quebec over time and under various climate change scenarios.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Spatial modeling of flood susceptibility using machine learning algorithms
    Meliho M.
    Khattabi A.
    Asinyo J.
    Arabian Journal of Geosciences, 2021, 14 (21)
  • [2] Flood susceptibility prediction using tree-based machine learning models in the GBA
    Lyu, Hai -Min
    Yin, Zhen-Yu
    SUSTAINABLE CITIES AND SOCIETY, 2023, 97
  • [3] Improving the Accuracy of Flood Susceptibility Prediction by Combining Machine Learning Models and the Expanded Flood Inventory Data
    Yu, Han
    Luo, Zengliang
    Wang, Lunche
    Ding, Xiangyi
    Wang, Shaoqiang
    REMOTE SENSING, 2023, 15 (14)
  • [4] Flood susceptibility modelling using advanced ensemble machine learning models
    Abu Reza Md Towfiqul Islam
    Swapan Talukdar
    Susanta Mahato
    Sonali Kundu
    Kutub Uddin Eibek
    Quoc Bao Pham
    Alban Kuriqi
    Nguyen Thi Thuy Linh
    Geoscience Frontiers, 2021, (03) : 66 - 83
  • [5] Flood susceptibility modelling using advanced ensemble machine learning models
    Islam, Abu Reza Md Towfiqul
    Talukdar, Swapan
    Mahato, Susanta
    Kundu, Sonali
    Eibek, Kutub Uddin
    Quoc Bao Pham
    Kuriqi, Alban
    Nguyen Thi Thuy Linh
    GEOSCIENCE FRONTIERS, 2021, 12 (03)
  • [6] Flood susceptibility modelling using advanced ensemble machine learning models
    Abu Reza Md Towfiqul Islam
    Swapan Talukdar
    Susanta Mahato
    Sonali Kundu
    Kutub Uddin Eibek
    Quoc Bao Pham
    Alban Kuriqi
    Nguyen Thi Thuy Linh
    Geoscience Frontiers, 2021, 12 (03) : 66 - 83
  • [7] Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models
    Ha, Hang
    Luu, Chinh
    Bui, Quynh Duy
    Pham, Duy-Hoa
    Hoang, Tung
    Nguyen, Viet-Phuong
    Vu, Minh Tuan
    Pham, Binh Thai
    NATURAL HAZARDS, 2021, 109 (01) : 1247 - 1270
  • [8] Modeling rules of regional flash flood susceptibility prediction using different machine learning models
    Chen, Yuguo
    Zhang, Xinyi
    Yang, Kejun
    Zeng, Shiyi
    Hong, Anyu
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [9] Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models
    Hang Ha
    Chinh Luu
    Quynh Duy Bui
    Duy-Hoa Pham
    Tung Hoang
    Viet-Phuong Nguyen
    Minh Tuan Vu
    Binh Thai Pham
    Natural Hazards, 2021, 109 : 1247 - 1270
  • [10] Examining LightGBM and CatBoost models for wadi flash flood susceptibility prediction
    Saber, Mohamed
    Boulmaiz, Tayeb
    Guermoui, Mawloud
    Abdrado, Karim, I
    Kantoush, Sameh A.
    Sumi, Tetsuya
    Boutaghane, Hamouda
    Nohara, Daisuke
    Mabrouk, Emad
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 7462 - 7487