Effect of O2 flow in discharge products and performance of Li-O2 batteries

被引:10
作者
Julio, Julia P. O. [1 ]
Francisco, Bruno A. B. [1 ]
de Sousa, Bianca P. [1 ]
Leal Silva, Jean Felipe [1 ]
Anchieta, Chayene G. [1 ]
Nepel, Thayane C. M. [1 ]
Rodella, Cristiane B. [2 ]
Maciel Filho, Rubens [1 ]
Doubek, Gustavo [1 ]
机构
[1] Univ Campinas UNICAMP, Sch Chem Engn, Ctr Innovat New Energies, Adv Energy Storage Div,Lab Adv Batteries LAB, BR-13083852 Campinas, SP, Brazil
[2] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS Sirus, POB 6192, BR-13083970 Campinas, SP, Brazil
来源
CHEMICAL ENGINEERING JOURNAL ADVANCES | 2022年 / 10卷
基金
巴西圣保罗研究基金会;
关键词
Aprotic Li-O-2 battery; Open system; Closed system; Oxygen plasma; Carbon nanotubes; Discharge products; ELECTRODE; WATER;
D O I
10.1016/j.ceja.2022.100271
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies on Li-O-2 batteries have addressed the chemical and morphological evolution of the device as a function of electrode material, electrolyte, and discharge current density. Here we report that simple operating conditions can also affect discharge product formation. Results show the formation of Li2O2 and LiOH in experiments using continuous O-2 flow (open system) and without it (closed system), and an additional more complex chemistry including LiOOH center dot H2O, Li2O and LiO2 in the closed system. This unexpected difference was also examined during charging of the Li-O-2 cell, in which the LiOOH center dot H2O is preferably reversed in comparison to LiOH. Beside the influence in the reaction routes, the O-2 flow and pressure impact on the cell performance. The total discharge capacity varies from 1,459 mA g - 1 to 2,460 mA g - 1 decreasing the O-2 flow. In contrast, when using the closed pressurized system, the discharge capacity increased up to 5,851 mA g - 1 with the same electrode in the best result, as the electrolyte loss due to evaporation was avoided.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Inside the electrode: Looking at cycling products in Li/O2 batteries [J].
Augustin, Matthias ;
Vullum, Per Erik ;
Vullum-Bruer, Fride ;
Svensson, Ann Mari .
JOURNAL OF POWER SOURCES, 2019, 414 :130-140
[2]   Radially ordered carbon nanotubes performance for Li-O2 batteries: Pre- treatment influence on capacity and discharge products [J].
Carvalho, Victor S. ;
Miranda, Andre N. ;
Nunes, Willian G. ;
Costa, Lenon H. ;
Pascon, Aline M. ;
Rodella, Cristiane B. ;
Zanin, Hudson ;
Doubek, Gustavo .
CATALYSIS TODAY, 2020, 348 :299-306
[3]   Operando Synchrotron XRD of Bromide Mediated Li-O2 Battery [J].
Cremasco, Leticia F. ;
Anchieta, Chayene G. ;
Nepel, Thayane C. M. ;
Miranda, Andre N. ;
Sousa, Bianca P. ;
Rodella, Cristiane B. ;
Filho, Rubens M. ;
Doubek, Gustavo .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (11) :13123-13131
[4]   Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries [J].
Ding, Yajun ;
Li, Yuejiao ;
Wu, Min ;
Zhao, Hong ;
Li, Qi ;
Wu, Zhong-Shuai .
ENERGY STORAGE MATERIALS, 2020, 31 :470-491
[5]   Cathodically Stable Li-O2 Battery Operations Using Water-in-Salt Electrolyte [J].
Dong, Qi ;
Yao, Xiahui ;
Zhao, Yanyan ;
Qi, Miao ;
Zhang, Xizi ;
Sun, Hongyu ;
He, Yumin ;
Wang, Dunwei .
CHEM, 2018, 4 (06) :1345-1358
[6]   Raman Spectroscopy in Lithium-Oxygen Battery Systems [J].
Gittleson, Forrest S. ;
Yao, Koffi P. C. ;
Kwabi, David G. ;
Sayed, Sayed Youssef ;
Ryu, Won-Hee ;
Shao-Horn, Yang ;
Taylor, Andre D. .
CHEMELECTROCHEM, 2015, 2 (10) :1446-1457
[7]   Operando Observation of the Gold-Electrolyte Interface in Li-O2 Batteries [J].
Gittleson, Forrest S. ;
Ryu, Won-Hee ;
Taylor, Andre D. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (21) :19017-19025
[8]   Humidity effect on electrochemical performance of Li-O2 batteries [J].
Guo, Ziyang ;
Dong, Xiaoli ;
Yuan, Shouyi ;
Wang, Yonggang ;
Xia, Yongyao .
JOURNAL OF POWER SOURCES, 2014, 264 :1-7
[9]   Perspectives and challenges of rechargeable lithium-air batteries [J].
Imanishi, N. ;
Yamamoto, O. .
MATERIALS TODAY ADVANCES, 2019, 4
[10]   Raman spectra of synthetic sapphire [J].
Kadleíková, M ;
Breza, J ;
Vesely, M .
MICROELECTRONICS JOURNAL, 2001, 32 (12) :955-958