Unfoldings of Singular Hopf Bifurcation

被引:23
作者
Guckenheimer, John [1 ]
Meerkamp, Philipp [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Hopf bifurcation; mixed-mode oscillation; singular perturbation; MIXED-MODE OSCILLATIONS; CANARDS; SYSTEMS;
D O I
10.1137/11083678X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Singular Hopf bifurcation occurs in generic families of vector fields with two slow variables and one fast variable. Prototypes for this bifurcation depend upon several parameters, and the dynamics displayed by these systems is intricate. The core of this paper is a numerical investigation of the bifurcations in one prototypical family. It presents extensive diagrams of bifurcations of equilibrium points and periodic orbits that are close to singular Hopf bifurcation. In addition, parameters are determined where there is a tangency between invariant manifolds that are important in the appearance of mixed-mode oscillations in systems near singular Hopf bifurcation. One parameter of the prototype is identified as the primary bifurcation parameter, and the paper presents a catalogue of bifurcation sequences that occur as the primary bifurcation parameter is varied. These results are applied to estimating the parameters for the onset of mixed-mode oscillations in a model of chemical oscillations.
引用
收藏
页码:1325 / 1359
页数:35
相关论文
共 36 条
[1]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[2]  
[Anonymous], 1990, Publications Mathematiques De L'institut Des Hautes Etudes Scientifiques
[3]  
Arnold V. I., 1994, Dynamical Systems V: Bifurcation Theory and Catastrophe Theory (Encyclopaedia of Mathematical Sciences)
[4]  
Benoit, 1981, Collect. Math, V31, P37
[5]   Singular Hopf bifurcation in systems with fast and slow variables [J].
Braaksma, B .
JOURNAL OF NONLINEAR SCIENCE, 1998, 8 (05) :457-490
[6]   Numerical continuation of canard orbits in slow-fast dynamical systems [J].
Desroches, M. ;
Krauskopf, B. ;
Osinga, H. M. .
NONLINEARITY, 2010, 23 (03) :739-765
[7]   The Geometry of Slow Manifolds near a Folded Node [J].
Desroches, M. ;
Krauskopf, B. ;
Osinga, H. M. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (04) :1131-1162
[8]   Mixed-Mode Oscillations with Multiple Time Scales [J].
Desroches, Mathieu ;
Guckenheimer, John ;
Krauskopf, Bernd ;
Kuehn, Christian ;
Osinga, Hinke M. ;
Wechselberger, Martin .
SIAM REVIEW, 2012, 54 (02) :211-288
[9]   MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs [J].
Dhooge, A ;
Govaerts, W ;
Kuznetsov, YA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02) :141-164
[10]  
Doedel E., 2010, AUTO SOFTWARE CONTIN