Fidelity analysis of topological quantum phase transitions

被引:86
作者
Abasto, Damian F. [1 ]
Hamma, Alioscia [2 ]
Zanardi, Paolo [1 ,3 ]
机构
[1] Univ So Calif, Ctr Quantum Informat Sci & Technol, Dept Phys & Astron, Los Angeles, CA 90089 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Inst Sci Interchange, I-10133 Turin, Italy
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevA.78.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply the fidelity metric approach to analyze two recently introduced models that exhibit a quantum phase transition to a topologically ordered phase. These quantum models have a known connection to classical statistical mechanical models; we exploit this mapping to obtain the scaling of the fidelity metric tensor near criticality. The topological phase transitions manifest themselves in divergences of the fidelity metric across the phase boundaries. These results provide evidence that the fidelity approach is a valuable tool to investigate novel phases lacking a clear characterization in terms of local order parameters.
引用
收藏
页数:4
相关论文
共 45 条
  • [1] [Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
  • [2] [Anonymous], ARXIVCONDMAT0701608
  • [3] Topological order and conformal quantum critical points
    Ardonne, E
    Fendley, P
    Fradkin, E
    [J]. ANNALS OF PHYSICS, 2004, 310 (02) : 493 - 551
  • [4] Baxter R J., 1982, EXACTLY SOLVED MODEL
  • [5] Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model
    Buonsante, P.
    Vezzani, A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (11)
  • [6] From quantum mechanics to classical statistical physics: Generalized Rokhsar-Kivelson Hamiltonians and the "Stochastic Matrix Form" decomposition
    Castelnovo, C
    Chamon, C
    Mudry, C
    Pujol, P
    [J]. ANNALS OF PHYSICS, 2005, 318 (02) : 316 - 344
  • [7] Quantum topological phase transition at the microscopic level
    Castelnovo, Claudio
    Chamon, Claudio
    [J]. PHYSICAL REVIEW B, 2008, 77 (05)
  • [8] Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction
    Chen, Shu
    Wang, Li
    Gu, Shi-Jian
    Wang, Yupeng
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [9] Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition
    Chen, Shu
    Wang, Li
    Hao, Yajiang
    Wang, Yupeng
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [10] Quantum fidelity and quantum phase transitions in matrix product states
    Cozzini, Marco
    Ionicioiu, Radu
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW B, 2007, 76 (10)