Discrete element modeling of a Mars Exploration Rover wheel in granular material

被引:94
作者
Knuth, M. A. [1 ]
Johnson, J. B. [2 ]
Hopkins, M. A. [1 ]
Sullivan, R. J. [3 ]
Moore, J. M. [4 ]
机构
[1] USA, Engineer Res & Dev Ctr, Cold Reg Res & Engn Lab, Hanover, NH 03755 USA
[2] Univ Alaska Fairbanks, Inst No Engn, Fairbanks, AK 99775 USA
[3] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
[4] NASA, Ames Res Ctr, Div Space Sci, Moffett Field, CA 94035 USA
关键词
Mars Exploration Rover; Discrete element method; Triaxial test; Lunar regolith simulant;
D O I
10.1016/j.jterra.2011.09.003
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three-dimensional discrete element method (DEM) simulations were developed for the Mars Exploration Rover (MER) mission to investigate: (1) rover wheel interactions with martian regolith; and (2) regolith deformation in a geotechnical triaxial strength cell (GTSC). These DEM models were developed to improve interpretations of laboratory and in situ rover data, and can simulate complicated regolith conditions. A DEM simulation was created of a laboratory experiment that involved a MER wheel digging into lunar regolith simulant. Sinkage and torques measured in the experiment were compared with those predicted numerically using simulated particles of increasing shape complexity (spheres, ellipsoids, and poly-ellipsoids). GTSC simulations, using the same model regolith used in the MER simulations, indicate a peak friction angle of approximately 37-38 degrees compared to internal friction angles of 36.5-37.7 degrees determined from the wheel digging experiments. Density of the DEM regolith was 1820 kg/m(3) compared to 1660 kg/m(3) for the lunar simulant used in the wheel digging experiment indicating that the number of grain contacts and grain contact resistance determined bulk strength in the DEM simulations, not density. An improved correspondence of DEM and actual test regolith densities is needed to simulate the evolution of regolith properties as density changes. Published by Elsevier Ltd. on behalf of ISTVS.
引用
收藏
页码:27 / 36
页数:10
相关论文
共 23 条
[1]   Strength Properties of JS']JSC-1A Lunar Regolith Simulant [J].
Alshibli, Khalid A. ;
Hasan, Alsidqi .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2009, 135 (05) :673-679
[2]  
[Anonymous], 2008, The Martian surface: composition, mineralogy and physical properties, DOI [DOI 10.1017/CBO9780511536076.021, 10.1017/CBO9780511536076.021]
[3]  
[Anonymous], 2007, D285003 ASTM
[4]  
[Anonymous], 1987, 1389 US GEOL SURV
[5]   Engineering Properties of Lunar Soil Simulant JS']JSC-1A [J].
Arslan, Haydar ;
Batiste, Susan ;
Sture, Stein .
JOURNAL OF AEROSPACE ENGINEERING, 2010, 23 (01) :70-83
[6]   Results from the Mars Phoenix Lander Robotic Arm experiment [J].
Arvidson, R. E. ;
Bonitz, R. G. ;
Robinson, M. L. ;
Carsten, J. L. ;
Volpe, R. A. ;
Trebi-Ollennu, A. ;
Mellon, M. T. ;
Chu, P. C. ;
Davis, K. R. ;
Wilson, J. J. ;
Shaw, A. S. ;
Greenberger, R. N. ;
Siebach, K. L. ;
Stein, T. C. ;
Cull, S. C. ;
Goetz, W. ;
Morris, R. V. ;
Ming, D. W. ;
Keller, H. U. ;
Lemmon, M. T. ;
Sizemore, H. G. ;
Mehta, M. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2009, 114
[7]  
Christensen P., 1992, MARTIAN SURFACE LAYE, P686
[8]   SINGULARITY FREE ALGORITHM FOR MOLECULAR-DYNAMICS SIMULATION OF RIGID POLYATOMICS [J].
EVANS, DJ ;
MURAD, S .
MOLECULAR PHYSICS, 1977, 34 (02) :327-331
[9]   Discrete element modeling with dilated particles [J].
Hopkins, MA .
ENGINEERING COMPUTATIONS, 2004, 21 (2-4) :422-430
[10]  
Johnson K L, 1987, CONTACT MECH