Metallic and dielectric metasurfaces in photoconductive terahertz devices: a review

被引:59
作者
Yachmenev, Alexander E. [1 ,2 ]
Lavrukhin, Denis V. [1 ,2 ]
Glinskiy, Igor A. [1 ,3 ]
Zenchenko, Nikolay V. [1 ,3 ]
Goncharov, Yurii G. [2 ]
Spektor, Igor E. [2 ]
Khabibullin, Rustam A. [1 ,3 ,4 ]
Otsuji, Taiichi [5 ]
Ponomarev, Dmitry S. [1 ,2 ,4 ]
机构
[1] Russian Acad Sci, Inst Ultra High Frequency Semicond Elect, Moscow, Russia
[2] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow, Russia
[3] Bauman Moscow State Tech Univ, Moscow, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
[5] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi, Japan
基金
俄罗斯科学基金会;
关键词
terahertz (THz) radiation; photoconductive antenna; THz emitters and detectors; plasmonic metasurface; dielectric metasurface; THz science and technology; EXTRAORDINARY OPTICAL-TRANSMISSION; SURFACE-PLASMON-POLARITONS; NONDESTRUCTIVE EVALUATION; CARRIER DYNAMICS; RADIATION POWER; THZ PHOTOMIXER; ANTENNAS; GAAS; SPECTROSCOPY; ENHANCEMENT;
D O I
10.1117/1.OE.59.6.061608
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This review highlights recent and novel trends focused on metallic (plasmonic) and dielectric metasurfaces in photoconductive terahertz (THz) devices. We demonstrate the great potential of its applications in the field of THz science and technology, nevertheless indicating some limitations and technological issues. From the state-of-the-art, the metasurfaces are, by far, able to force out previous approaches like photonic crystals and are capable of significantly increasing the performance of contemporary photoconductive devices operating at THz frequencies. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:18
相关论文
共 144 条
[1]   Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging [J].
Ahi, Kiarash ;
Shahbazmohamadi, Sina ;
Asadizanjani, Navid .
OPTICS AND LASERS IN ENGINEERING, 2018, 104 :274-284
[2]   Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces [J].
Aieta, Francesco ;
Genevet, Patrice ;
Kats, Mikhail A. ;
Yu, Nanfang ;
Blanchard, Romain ;
Gahurro, Zeno ;
Capasso, Federico .
NANO LETTERS, 2012, 12 (09) :4932-4936
[3]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[4]   Coherent perfect absorbers: linear control of light with light [J].
Baranov, Denis G. ;
Krasnok, Alex ;
Shegai, Timur ;
Alu, Andrea ;
Chong, Yidong .
NATURE REVIEWS MATERIALS, 2017, 2 (12)
[5]   Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array [J].
Bashirpour, Mohammad ;
Poursafar, Jafar ;
Kolandouz, Mohammadreza ;
Hajari, Mohsen ;
Forouzmehr, Matin ;
Neshat, Mohammad ;
Hajihoseini, Hamid ;
Fathipour, Morteza ;
Kolahdouz, Zahra ;
Zhang, Guoqi .
OPTICS AND LASER TECHNOLOGY, 2019, 120
[6]   Improvement of Terahertz Photoconductive Antenna using Optical Antenna Array of ZnO Nanorods [J].
Bashirpour, Mohammad ;
Forouzmehr, Matin ;
Hosseininejad, Seyed Ehsan ;
Kolahdouz, Mohammadreza ;
Neshat, Mohammad .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   Enhancement of optical absorption in LT-GaAs by double layer nanoplasmonic array in photoconductive antenna [J].
Bashirpour, Mohammad ;
Kolandouz, Mohammadreza ;
Neshat, Mohammad .
VACUUM, 2017, 146 :430-436
[8]   Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy [J].
Beard, MC ;
Turner, GM ;
Schmuttenmaer, CA .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (12) :5915-5923
[9]   Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna [J].
Beck, M. ;
Schaefer, H. ;
Klatt, G. ;
Demsar, J. ;
Winnerl, S. ;
Helm, M. ;
Dekorsy, T. .
OPTICS EXPRESS, 2010, 18 (09) :9251-9257
[10]  
Berrou C, 2010, IRIS INT SER, P1