Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease

被引:89
作者
Senatorov, VV [1 ]
Ren, M [1 ]
Kanai, H [1 ]
Wei, H [1 ]
Chuang, DM [1 ]
机构
[1] NIMH, Mol Neurobiol Sect, NIH, Bethesda, MD 20892 USA
关键词
lithium; striatum; quinolinic acid; apoptosis; proliferation; Bcl-2;
D O I
10.1038/sj.mp.4001463
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We assessed the ability of lithium to reduce neurodegeneration and to stimulate cell proliferation in a rat model of Huntington's disease in which quinolinic acid (QA) was unilaterally infused into the striatum. LiCl (0.5-3.0mEq/kg) was injected subcutaneously 24 h before and 1 h after QA infusion. At 7 days after QA injection, lithium significantly diminished the loss of neurons immunostained for Neuronal Nuclei (NeuN) in the injured striatum, but failed to prevent the reduction of NADPH-diaphorase-positive striatal interneurons. Lithium also reduced the number of neurons showing DNA damage or activated caspase-3. This neuroprotection was associated with an upregulation of Bcl-2 protein levels in the striatal tissue and an increase in the number and density of Bcl-2 immunostaining in striatal neurons. Bromodeoxyuridinie (BrdU) labeling in the lithium-treated injured striatum revealed the presence of large numbers of proliferating cells near the QA-injection site, with a reduction of BrdU-labeled cells in the subventricular zone (SVZ). All BrdU-labeled cells in the SVZ and the majority of BrdU-labeled cells near the QA-injection site were negative for either NeuN or glial fibrillary acidic protein (GFAP), suggesting that they are undifferentiated progenitor cells. However, a small number of BrdU-positive cells found in the QA-injected and lithium-treated striatum site were positive for either NeuN or GFAP. Our results suggest that lithium is neuroprotective in the QA-injection model of Huntington's disease not only due to its ability to inhibit apoptosis but also because it can stimulate neuronal and astroglial progenitor proliferation in the QA-injected striatum or their migration from the SVZ.
引用
收藏
页码:371 / 385
页数:15
相关论文
共 51 条
[1]   ESTIMATION OF NUCLEAR POPULATION FROM MICROTOME SECTIONS [J].
ABERCROMBIE, M .
ANATOMICAL RECORD, 1946, 94 (02) :239-247
[2]   Neurogenesis in adult subventricular zone [J].
Alvarez-Buylla, A ;
García-Verdugo, JM .
JOURNAL OF NEUROSCIENCE, 2002, 22 (03) :629-634
[3]  
BEAL MF, 1991, J NEUROSCI, V11, P1649
[4]   REPLICATION OF THE NEUROCHEMICAL CHARACTERISTICS OF HUNTINGTONS-DISEASE BY QUINOLINIC ACID [J].
BEAL, MF ;
KOWALL, NW ;
ELLISON, DW ;
MAZUREK, MF ;
SWARTZ, KJ ;
MARTIN, JB .
NATURE, 1986, 321 (6066) :168-171
[5]   Loss of normal huntingtin function: new developments in Huntington's disease research [J].
Cattaneo, E ;
Rigamonti, D ;
Goffredo, D ;
Zuccato, C ;
Squitieri, F ;
Sipione, S .
TRENDS IN NEUROSCIENCES, 2001, 24 (03) :182-188
[6]   Enhancement of hippocampal neurogenesis by lithium [J].
Chen, G ;
Rajkowska, G ;
Du, F ;
Seraji-Bozorgzad, N ;
Manji, HK .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (04) :1729-1734
[7]   Neuroprotective effects of lithium in cultured cells and animal models of diseases [J].
Chuang, DM ;
Chen, RW ;
Chalecka-Franaszek, E ;
Ren, M ;
Hashimoto, R ;
Senatorov, V ;
Kanai, H ;
Hough, C ;
Hiroi, T ;
Leeds, P .
BIPOLAR DISORDERS, 2002, 4 (02) :129-136
[8]   Inhibition of glycogen synthase kinase 3β activity regulates proliferation of cultured cerebellar granule cells [J].
Cui, H ;
Meng, Y ;
Bulleit, RF .
DEVELOPMENTAL BRAIN RESEARCH, 1998, 111 (02) :177-188
[9]   NO EVIDENCE FOR PRESERVATION OF SOMATOSTATIN-CONTAINING NEURONS AFTER INTRASTRIATAL INJECTIONS OF QUINOLINIC ACID [J].
DAVIES, SW ;
ROBERTS, PJ .
NATURE, 1987, 327 (6120) :326-329
[10]   Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats [J].
Dempsey, RJ ;
Baskaya, MK ;
Dogan, A .
NEUROSURGERY, 2000, 47 (02) :399-404