Finite-time blow-up for solutions to a degenerate drift-diffusion equation for a fast-diffusion case

被引:3
|
作者
Kurokiba, Masaki [1 ]
Ogawa, Takayoshi [2 ]
机构
[1] Muroran Inst Technol, Math Sci ReNcarch Unit, Coll Liberal Arts, Muroran, Hokkaido 0508585, Japan
[2] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
degenerate drift-diffusion system; finite-time blow-up; Shannon's inequality; existence of weak solution; free energy; virial law; KELLER-SEGEL MODEL; PARABOLIC-ELLIPTIC SYSTEM; GLOBAL EXISTENCE; KINETIC-THEORY; BEHAVIOR; CHEMOTAXIS;
D O I
10.1088/1361-6544/ab0069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-existence of a time global solution to the Cauchy problem of a degenerate drift-diffusion system with a fast-diffusion exponent. We show that the solution for fast-diffusion cases with the diffusion exponent n/n+2 < alpha < 1 blows up in a finite time if the initial data satisfy certain conditions involving the free energy. We also show the finite-time blow-up for the radially symmetric case without a finite moment condition.
引用
收藏
页码:2073 / 2093
页数:21
相关论文
共 50 条