Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production

被引:48
作者
Bhandiwad, Ashwini [1 ]
Shaw, A. Joe [2 ]
Guss, Adam [1 ]
Guseva, Anna [1 ]
Bahl, Hubert [3 ]
Lynd, Lee R. [1 ,2 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Mascoma Corp, Lebanon, NH 03766 USA
[3] Univ Rostock, D-18051 Rostock, Germany
关键词
Metabolic engineering; Biofuels; n-Butanol; Thermophiles; CLOSTRIDIUM-ACETOBUTYLICUM; SACCHAROMYCES-CEREVISIAE; EXPRESSION; BACTERIUM; THERMOSACCHAROLYTICUM; DEHYDROGENASE; COENZYME; ETHANOL; CLONING; GENES;
D O I
10.1016/j.ymben.2013.10.012
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The thermophilic anaerobe Thertnoanaerobucterium sacchurolyticurn JW/SL-YS485 was investigated as a host for n-butanol production. A systematic approach was taken to demonstrate functionality of heterologous components of the clostridial n-butanol pathway via gene expression and enzymatic activity assays in this organism. Subsequently, integration of the entire pathway in the wild type strain resulted in n-butanol production of 0.85 g/L from 10 g/L xylose, corresponding to 21% of the theoretical maximum yield. We were unable to integrate the n-butanol pathway in strains lacking the ability to produce acetate, despite the theoretical overall redox neutrality of n-butanol formation. However, integration of the n-butanol pathway in lactate deficient strains resulted in n-butanol production of 1.05 g/L from 10 g/L xylose, corresponding to 26% of the theoretical maximum. (C) 2013 Published by Elsevier Inc. on behalf of International Metabolic Engineering Society.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 52 条
[1]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[2]   Extremophiles in biofuel synthesis [J].
Barnard, Desire ;
Casanueva, Ana ;
Tuffin, Marla ;
Cowan, Donald .
ENVIRONMENTAL TECHNOLOGY, 2010, 31 (8-9) :871-888
[3]   Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis [J].
Berezina, Oksana V. ;
Zakharova, Natalia V. ;
Brandt, Agnieszka ;
Yarotsky, Sergey V. ;
Schwarz, Wolfgang H. ;
Zverlov, Vladimir V. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (02) :635-646
[4]   Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways [J].
Bond-Watts, Brooks B. ;
Bellerose, Robert J. ;
Chang, Michelle C. Y. .
NATURE CHEMICAL BIOLOGY, 2011, 7 (04) :222-227
[5]   Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824 [J].
Boynton, ZL ;
Bennett, GN ;
Rudolph, FB .
JOURNAL OF BACTERIOLOGY, 1996, 178 (11) :3015-3024
[6]  
Buckel W., 2012, Biochim Biophys Acta
[7]   Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum [J].
Currie, Devin H. ;
Herring, Christopher D. ;
Guss, Adam M. ;
Olson, Daniel G. ;
Hogsett, David A. ;
Lynd, Lee R. .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[8]   Cellulase, clostridia, and ethanol [J].
Demain, AL ;
Newcomb, M ;
Wu, JHD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2005, 69 (01) :124-+
[9]   Biobutanol [J].
Dong, Hongjun ;
Tao, Wenwen ;
Dai, Zongjie ;
Yang, Liejian ;
Gong, Fuyu ;
Zhang, Yanping ;
Li, Yin .
BIOTECHNOLOGY IN CHINA III: BIOFUELS AND BIOENERGY, 2012, 128 :85-100
[10]   Fermentative butanol production -: Bulk chemical and biofuel [J].
Duerre, Peter .
INCREDIBLE ANAEROBES: FROM PHYSIOLOGY TO GENOMICS TO FUELS, 2008, 1125 :353-362