Comparison of flexoelectric and piezoelectric ring energy harvester

被引:8
作者
Zhang, X. F. [1 ]
Hu, K. M. [2 ]
Li, H. [2 ]
机构
[1] Zhejiang Univ City Coll, Sch Engn, 51 Huzhou St, Hangzhou 310015, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Aeronaut & Astronaut, StrucTron & Control Lab, Hangzhou, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexoelectric; piezoelectric effect; energy harvester; power output;
D O I
10.1177/0954406218806018
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Flexoelectric/piezoelectric effect is an electromechanical coupling effect occurring in dielectrics. In this study, a flexoelectric/piezoelectric ring energy harvester is proposed based on the direct flexoelectric/piezoelectric effect. The flexoelectric/piezoelectric ring energy harvester is made of an elastic ring and a flexoelectric/piezoelectric patch laminated on its surface. The electromechanical coupling mechanism of the flexoelectric/piezoelectric ring energy harvester is explored. Then the voltage and power output across the load resistance are derived in the closed-circuit condition for the energy harvester. The distinctive characteristics between the flexoelectric and the piezoelectric energy harvesters are discussed and compared in detail. The output power/voltage is related to various parameters, such as flexoelectric/piezoelectric patch size, load resistance, and flexoelectric/piezoelectric patch thickness, which are discussed to improve the power output across the load resistance. The flexoelectric ring energy harvester is more effective than the piezoelectric ring energy harvester in the transverse oscillation-bending dominant vibration, since the flexoelectric effect is sensitive to the strain gradient (bending strain). This study, including theoretical derivations and simulation plots, provide design guidelines in engineering applications for flexoelectric/piezoelectric effect.
引用
收藏
页码:3795 / 3803
页数:9
相关论文
共 17 条
[1]   Nanoscale flexoelectric energy harvesting [J].
Deng, Qian ;
Kammoun, Mejdi ;
Erturk, Alper ;
Sharma, Pradeep .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) :3218-3225
[2]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[3]   Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites [J].
Fu, John Y. ;
Zhu, Wenyi ;
Li, Nan ;
Smith, Nadine B. ;
Cross, L. Eric .
APPLIED PHYSICS LETTERS, 2007, 91 (18)
[4]   Comparison of flexoelectric and piezoelectric dynamic signal responses on flexible rings [J].
Hu, Shundi ;
Li, Hua ;
Tzou, Hornsen .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (07) :832-844
[5]   Flexoelectric Responses of Circular Rings [J].
Hu, Shundi ;
Li, Hua ;
Tzou, Hornsen .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2013, 135 (02)
[6]   Experimental and Analytical Parametric Study of Single-Crystal Unimorph Beams for Vibration Energy Harvesting [J].
Karami, M. Amin ;
Bilgen, Onur ;
Inman, Daniel J. ;
Friswell, Michael I. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2011, 58 (07) :1508-1520
[7]   Distributed flexoelectric modal signals on circular cylindrical shells [J].
Li, Hua ;
Hu, Kaiming ;
Tzou, H. S. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2018, 232 (06) :952-961
[8]  
Soedel W., 1993, VIBRATIONS SHELLS PL
[9]   PIEZOELECTRICITY AND FLEXOELECTRICITY IN CRYSTALLINE DIELECTRICS [J].
TAGANTSEV, AK .
PHYSICAL REVIEW B, 1986, 34 (08) :5883-5889
[10]   Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling [J].
Tagantsev, Alexander K. ;
Meunier, Vincent ;
Sharma, Pradeep .
MRS BULLETIN, 2009, 34 (09) :643-647