Genome-Wide Detection and Analysis of Multifunctional Genes

被引:31
作者
Pritykin, Yuri [1 ,2 ]
Ghersi, Dario [2 ,3 ]
Singh, Mona [1 ,2 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[3] Univ Nebraska, Sch Interdisciplinary Informat, Omaha, NE 68182 USA
关键词
MOONLIGHTING PROTEINS; FUNCTIONAL ANNOTATION; ONTOLOGY; DATABASE; IDENTIFICATION; PREDICTION; PHENOTYPE; RESOURCE; ELEMENTS; DISEASE;
D O I
10.1371/journal.pcbi.1004467
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms-H. sapiens, D. melanogaster, and S. cerevisiae-and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality.
引用
收藏
页数:27
相关论文
共 67 条
[1]   Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks [J].
Agarwal, Sumeet ;
Deane, Charlotte M. ;
Porter, Mason A. ;
Jones, Nick S. .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (06) :1-12
[2]   McKusick's Online Mendelian Inheritance in Man (OMIM®) [J].
Amberger, Joanna ;
Bocchini, Carol A. ;
Scott, Alan F. ;
Hamosh, Ada .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D793-D796
[3]  
[Anonymous], DATABASE 2012
[4]  
[Anonymous], NUCLEIC ACIDS RES S1
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[7]   Multifunctional proteins revealed by overlapping clustering in protein interaction network [J].
Becker, Emmanuelle ;
Robisson, Benoit ;
Chapple, Charles E. ;
Guenoche, Alain ;
Brun, Christine .
BIOINFORMATICS, 2012, 28 (01) :84-90
[8]   Genome-wide RNAi analysis of growth and viability in Drosophila cells [J].
Boutros, M ;
Kiger, AA ;
Armknecht, S ;
Kerr, K ;
Hild, M ;
Koch, B ;
Haas, SA ;
Paro, R ;
Perrimon, N .
SCIENCE, 2004, 303 (5659) :832-835
[9]   The BioGRID interaction database: 2013 update [J].
Chatr-aryamontri, Andrew ;
Breitkreutz, Bobby-Joe ;
Heinicke, Sven ;
Boucher, Lorrie ;
Winter, Andrew ;
Stark, Chris ;
Nixon, Julie ;
Ramage, Lindsay ;
Kolas, Nadine ;
O'Donnell, Lara ;
Reguly, Teresa ;
Breitkreutz, Ashton ;
Sellam, Adnane ;
Chen, Daici ;
Chang, Christie ;
Rust, Jennifer ;
Livstone, Michael ;
Oughtred, Rose ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D816-D823
[10]   OGEE: an online gene essentiality database [J].
Chen, Wei-Hua ;
Minguez, Pablo ;
Lercher, Martin J. ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D901-D906