Objective Osteoprotegerin (OPG) is a decoy receptor for the osteoclast differentiation factor receptor activator of NF-B ligand. OPG regulates bone homeostasis, and its inactivation in mice results in severe osteoporosis. OPG deficiency in apolipoprotein E (ApoE)(-/-) mice results in increased atherosclerotic lesion size and calcification. Furthermore, receptor activator of NF-B ligand enhances macrophage-dependent smooth muscle cell calcification in vitro. Here, we hypothesized that reconstitution of ApoE(-/-)OPG(-/-) mice with ApoE(-/-)OPG(+/+) bone marrow (BM) would be sufficient to rescue lesion progression and vascular calcification. Conversely, reconstitution of ApoE(-/-)OPG(+/+) mice with ApoE(-/-)OPG(-/-) BM may accelerate lesion progression and vascular calcification. Approach and Results ApoE(-/-)OPG(-/-) mice transplanted with ApoE(-/-)OPG(+/+) BM developed smaller atherosclerotic lesions and deposited less calcium in the innominate artery than that of ApoE(-/-)OPG(-/-) mice transplanted with ApoE(-/-)OPG(-/-) BM. There were no differences in lesion size and calcification in ApoE(-/-)OPG(+/+) mice transplanted with BM from ApoE(-/-)OPG(-/-) or ApoE(-/-)OPG(+/+) mice. The large lesions observed in the ApoE(-/-)OPG(-/-) mice transplanted with OPG(-/-) BM were rich in chondrocyte-like cells, collagen, and proteoglycans. Importantly, the ApoE(-/-)OPG(-/-) mice transplanted with OPG(+/+) BM remained osteoporotic, and the ApoE(-/-)OPG(+/+) mice did not show signs of bone loss regardless of the type of BM received. In coculture experiments, macrophages and mesenchymal stem cells derived from ApoE(-/-)OPG(-/-) BM induced more vascular smooth muscle cell calcification than cells derived from ApoE(-/-)OPG(+/+) mice. Conclusions These results indicate that OPG derived either from the BM or from the vessel wall is sufficient to slow down lesion progression and vascular calcification independent of bone turnover.