Solution of a model Boltzmann equation via steepest descent in the 2-Wasserstein metric

被引:29
作者
Carlen, EA [1 ]
Gangbo, W [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s00205-003-0296-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a model Boltzmann equation closely related to the BGK equation using a steepest-descent method in the Wasserstein metric, and prove global existence of energy-and momentum-conserving solutions. We also show that the solutions converge to the manifold of local Maxwellians in the large-time limit, and obtain other information on the behavior of the solutions. We show how the Wasserstein metric is natural for this problem because it is adapted to the study of both the free streaming and the ''collisions''.
引用
收藏
页码:21 / 64
页数:44
相关论文
共 21 条
  • [1] ALT HW, 1983, MATH Z, V183, P311
  • [2] PRECISED LP REGULARITY OF THE MEANS IN TRANSPORT-EQUATIONS
    BEZARD, M
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (01): : 29 - 76
  • [3] Boltzmann L., 1872, Sitzungsberichte Akad. Wiss., V66, P275, DOI DOI 10.1007/978-3-322-84986-1_3
  • [4] BOUCHUT F, 2000, SERIES APPL MATH, V4
  • [5] Brezis H., 1983, ANAL FONCTIONELLE TH
  • [6] CARLEN EA, CONSTRAINED STEEPEST
  • [7] Cercignani C., 1994, MATH THEORY DILUTE G, V106
  • [8] CERCIGNANI C, 1996, BOLTZMANN EQUATION
  • [9] LP REGULARITY OF VELOCITY AVERAGES
    DIPERNA, RJ
    LIONS, PL
    MEYER, Y
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4): : 271 - 287
  • [10] ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY
    DIPERNA, RJ
    LIONS, PL
    [J]. ANNALS OF MATHEMATICS, 1989, 130 (02) : 321 - 366