Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol

被引:71
作者
Blair, Sandra L. [1 ]
MacMillan, Amanda C. [1 ]
Drozd, Greg T. [2 ]
Goldstein, Allen H. [2 ]
Chu, Rosalie K. [3 ]
Pasa-Tolic, Ljiljana [3 ]
Shaw, Jared B. [3 ]
Tolic, Nikola [3 ]
Lin, Peng [3 ]
Laskin, Julia [4 ]
Laskin, Alexander [3 ]
Nizkorodov, Sergey A. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[2] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[3] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[4] Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA 99354 USA
基金
美国海洋和大气管理局;
关键词
CHEMICAL-CHARACTERIZATION; PARTICULATE MATTER; ALPHA-PINENE; MASS; RESOLUTION; GAS; OXIDATION; PHASE; HYDROCARBONS; EMISSIONS;
D O I
10.1021/acs.est.6b03304
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Secondary organic aerosol (SOA), formed in the photooxidation of diesel fuel, biodiesel fuel, and 20% biodiesel fuel/80% diesel fuel mixture, are prepared under high-NOx conditions in the presenth and absence of sulfur dioxide (SO2), ammonia (NH3), and relative humidity (RH). The composition of condensed-phase organic compounds in SOA- is measured using several complementary techniques including aerosol mass spectrometry (AMS), high-resolution nanospray desorption electrospray ionization mass spectrometry (nano-DESI/HRMS), arid ultrahigh resolution and mass accuracy 21T Fourier transform ion cyclotron resonance mass spectrometry (21T FT-ICR MS). Results demonstratethat sulfuric acid and condensed organosulfur species formed in photooxidation experiments with SO2 are present in the SOA particle. Fewer organosulfur species are formed in the high humidity experiMents, performed at RH 90%, in comparison with experiments done under dry conditions. There is a strong overlap of organosulfur species observed in this study with previous field and chamber studies of SOA. Many MS peaks of organosulfates (R-OS(O)(2)OH) previously designated as biogenic,or of unknown origin in field studies might have originated from anthropogenic sources, such as photooxidation of hydrocarbons present in diesel and biodiesel fuel.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 57 条
[1]   Prospective air pollutant emissions inventory for the development and production of unconventional natural gas in the Karoo basin, South Africa [J].
Altieri, Katye E. ;
Stone, Adrian .
ATMOSPHERIC ENVIRONMENT, 2016, 129 :34-42
[2]   SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 1: Laboratory investigations [J].
Berndt, T. ;
Stratmann, F. ;
Braesel, S. ;
Heintzenberg, J. ;
Laaksonen, A. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (21) :6365-6374
[3]   Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations [J].
Boris, A. J. ;
Lee, T. ;
Park, T. ;
Choi, J. ;
Seo, S. J. ;
Collett, J. L., Jr. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (02) :437-453
[4]   Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene [J].
Chan, M. N. ;
Surratt, J. D. ;
Chan, A. W. H. ;
Schilling, K. ;
Offenberg, J. H. ;
Lewandowski, M. ;
Edney, E. O. ;
Kleindienst, T. E. ;
Jaoui, M. ;
Edgerton, E. S. ;
Tanner, R. L. ;
Shaw, S. L. ;
Zheng, M. ;
Knipping, E. M. ;
Seinfeld, J. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (04) :1735-1751
[5]   Formation and Stability of Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates [J].
Darer, Adam I. ;
Cole-Filipiak, Neil C. ;
O'Connor, Alison E. ;
Elrod, Matthew J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (05) :1895-1902
[6]   Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid-liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides [J].
Drozd, G. T. ;
Woo, J. L. ;
McNeill, V. F. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (16) :8255-8263
[7]   Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways [J].
Drozd, Greg T. ;
Worton, David R. ;
Aeppli, Christoph ;
Reddy, Christopher M. ;
Zhang, Haofei ;
Variano, Evan ;
Goldstein, Allen H. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2015, 120 (11) :7300-7315
[8]   Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States [J].
Edney, EO ;
Kleindienst, TE ;
Jaoui, M ;
Lewandowski, M ;
Offenberg, JH ;
Wang, W ;
Claeys, M .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (29) :5281-5289
[9]   Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry [J].
Farmer, D. K. ;
Matsunaga, A. ;
Docherty, K. S. ;
Surratt, J. D. ;
Seinfeld, J. H. ;
Ziemann, P. J. ;
Jimenez, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (15) :6670-6675
[10]   Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter [J].
Field, R. A. ;
Soltis, J. ;
McCarthy, M. C. ;
Murphy, S. ;
Montague, D. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (06) :3527-3542