Eigenvalues and degree deviation in graphs

被引:40
作者
Nikiforov, V [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
graph eigeuvalues; degree sequence; measure of irregularity; semiregular graph;
D O I
10.1016/j.laa.2005.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with n vertices and in edges and let mu(G) = mu(1) (G) >= (.) (.) (.) >= mu(n) (G) be the eigenvalues of its adjacency matrix. Set s(G) = Sigma(u is an element of V(G)) vertical bar d(u) - 2m/N vertical bar. We prove that s(2)(G)/2n(2)root 2m <= mu (G) - 2m/n <= root s(G). In addition we derive similar inequalities for bipartite G. We also prove that the inequality mu k(G) + mu(n-k+2)((G) over bar) >= -1-2 root 2s(G) holds for every k = 2..... n. Finally we prove that for every graph G of order n, mu(n) (G) + mu(n) ((G) over bar) <= -1- s(2)(G)/ 2n(3.) We show that these inequalities are tight up to a constant factor. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:347 / 360
页数:14
相关论文
共 11 条
[1]  
[Anonymous], 1998, GRADUATE TEXTS MATH
[2]   A NOTE ON THE IRREGULARITY OF GRAPHS [J].
BELL, FK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 161 :45-54
[3]   On the spectral radius of graphs with cut vertices [J].
Berman, A ;
Zhang, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :233-240
[4]   Graphs and Hermitian matrices:: eigenvalue interlacing [J].
Bollobás, B ;
Nikiforov, V .
DISCRETE MATHEMATICS, 2004, 289 (1-3) :119-127
[5]  
Collatz L., 1957, Abh. Math. Sem. Univ. Hamburg, V21, P63, DOI DOI 10.1007/BF02941924
[6]  
CVETOVIC DM, 1980, SPECTRA GRAPHS
[7]   INTERLACING EIGENVALUES AND GRAPHS [J].
HAEMERS, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 :593-616
[8]   SPECTRAL-RADIUS AND DEGREE SEQUENCE [J].
HOFMEISTER, M .
MATHEMATISCHE NACHRICHTEN, 1988, 139 :37-44
[9]  
Horn R. A., 1986, Matrix analysis
[10]  
Nosal E., 1970, THESIS U CALGARY