DIRAC STRUCTURES AND HAMILTON-JACOBI THEORY FOR LAGRANGIAN MECHANICS ON LIE ALGEBROIDS

被引:10
作者
Leok, Melvin [1 ]
Sosa, Diana [2 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ La Laguna, Fac CC EE & Empresariales, Dept Econ Aplicada, Tenerife, Canary Islands, Spain
[3] Univ La Laguna, Fac CC EE & Empresariales, Unidad Asociada ULL CSIC Geometria Diferencial &, Tenerife, Canary Islands, Spain
[4] Univ Europea Canarias, Tenerife, Canary Islands, Spain
基金
美国国家科学基金会;
关键词
Dirac structures; implicit Lagrangian systems; Lie algebroids; Lagrangian mechanics; nonholonomic systems; Hamilton-Jacobi equation; SYSTEMS; FORMULATION; REDUCTION; FRAMEWORK; DYNAMICS; EQUATION;
D O I
10.3934/jgm.2012.4.421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops the notion of implicit Lagrangian systems on Lie algebroids and a Hamilton-Jacobi theory for this type of system. The Lie algebroid framework provides a natural generalization of classical tangent bundle geometry. We define the notion of an implicit Lagrangian system on a Lie algebroid E using Dirac structures on the Lie algebroid prolongation (TE)-E-E*. This setting includes degenerate Lagrangian systems with nonholonomic constraints on Lie algebroids.
引用
收藏
页码:421 / 442
页数:22
相关论文
共 45 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] [Anonymous], 1988, Action Hamiltoniennes de groupes. Troisieme theoreme de Lie (Lyon
  • [3] A unified framework for mechanics: Hamilton-Jacobi equation and applications
    Balseiro, P.
    Marrero, J. C.
    Martin de Diego, D.
    Padron, E.
    [J]. NONLINEARITY, 2010, 23 (08) : 1887 - 1918
  • [4] Bates L., 1993, Reports on Mathematical Physics, V32, P99, DOI 10.1016/0034-4877(93)90073-N
  • [5] Bloch A., 1999, P S PURE MATH, V64, P103
  • [6] Bloch A.M., 2003, INTERD APPL, P24
  • [7] Nonholonomic mechanical systems with symmetry
    Bloch, AM
    Krishnaprasad, PS
    Marsden, JE
    Murray, RM
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1996, 136 (01) : 21 - 99
  • [8] Geometric Hamilton-Jacobi theory
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1417 - 1458
  • [9] GEOMETRIC HAMILTON-JACOBI THEORY FOR NONHOLONOMIC DYNAMICAL SYSTEMS
    Carinena, Jose F.
    Gracia, Xavier
    Marmo, Giuseppe
    Martinez, Eduardo
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (03) : 431 - 454
  • [10] Cortes J., 2004, IMA Journal of Mathematical Control and Information, V21, P457, DOI 10.1093/imamci/21.4.457