The Semi Heyting-Brouwer Logic

被引:4
作者
Manuel Cornejo, Juan [1 ]
机构
[1] Univ Nacl Sur, CONICET, INMABB, Dept Matemat, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Semi Heyting-Brouwer logic; Semi-Heyting algebras; Heyting-Brouwer logic; Heyting algebras; INTUITIONISTIC LOGIC; SUBTRACTIVE LOGIC; COMPLETENESS; EQUIVALENT; ALGEBRAS;
D O I
10.1007/s11225-014-9596-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce a logic that we name semi Heyting-Brouwer logic, , in such a way that the variety of double semi-Heyting algebras is its algebraic counterpart. We prove that, up to equivalences by translations, the Heyting-Brouwer logic is an axiomatic extension of and that the propositional calculi of intuitionistic logic and semi-intuitionistic logic turn out to be fragments of .
引用
收藏
页码:853 / 875
页数:23
相关论文
共 21 条
[1]   Semi-Heyting Algebras Term-equivalent to Godel Algebras [J].
Abad, Manuel ;
Manuel Cornejo, Juan ;
Diaz Varela, Jose Patricio .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02) :625-642
[2]  
[Anonymous], 1970, MONOGRAFIE MATEMATYC
[3]  
Beazer R., 1980, Algebra Univers., V10, P220
[4]   On Some Semi-Intuitionistic Logics [J].
Cornejo, Juan M. ;
Viglizzo, Ignacio D. .
STUDIA LOGICA, 2015, 103 (02) :303-344
[5]   A formulae-as-types interpretation of subtractive logic [J].
Crolard, T .
JOURNAL OF LOGIC AND COMPUTATION, 2004, 14 (04) :529-570
[6]   Subtractive logic [J].
Crolard, T .
THEORETICAL COMPUTER SCIENCE, 2001, 254 (1-2) :151-185
[7]  
Czermak J., 1977, NOTRE DAME J FORM L, V18, P471, DOI [10.1305/ndjfl/1093888021, DOI 10.1305/NDJFL/1093888021]
[8]   A Survey of Abstract Algebraic Logic [J].
J. M. Font ;
R. Jansana ;
D. Pigozzi .
Studia Logica, 2003, 74 (1-2) :13-97
[9]  
Goré R, 2000, LECT NOTES ARTIF INT, V1847, P252
[10]  
Gore R., 2008, ADV MODAL LOGIC, V7, P43