Memristive Rulkov Neuron Model With Magnetic Induction Effects

被引:208
作者
Li, Kexin [1 ]
Bao, Han [1 ]
Li, Houzhen [1 ]
Ma, Jun [2 ]
Hua, Zhongyun [3 ]
Bao, Bocheng [1 ]
机构
[1] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
[2] Lanzhou Univ Technol, Dept Phys, Lanzhou 730050, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Memristors; Neurons; Biological system modeling; Magnetic flux; Firing; Integrated circuit modeling; Transient analysis; Initial state; magnetic induction; memristive rulkov (m-Rulkov) model; regime transition; transient chaos; ELECTRICAL-ACTIVITY; HARDWARE; DYNAMICS; NETWORK;
D O I
10.1109/TII.2021.3086819
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The magnetic induction effects have been emulated by various continuous memristive models but they have not been successfully described by a discrete memristive model yet. To address this issue, this article first constructs a discrete memristor and then presents a discrete memristive Rulkov (m-Rulkov) neuron model. The bifurcation routes of the m-Rulkov model are declared by detecting the eigenvalue loci. Using numerical measures, we investigate the complex dynamics shown in the m-Rulkov model, including regime transition behaviors, transient chaotic bursting regimes, and hyperchaotic firing behaviors, all of which are closely relied on the memristor parameter. Consequently, the involvement of memristor can be used to simulate the magnetic induction effects in such a discrete neuron model. Besides, we elaborate a hardware platform for implementing the m-Rulkov model and acquire diverse spiking-bursting sequences. These results show that the presented model is viable to better characterize the actual firing activities in biological neurons than the Rulkov model when biophysical memory effect is supplied.
引用
收藏
页码:1726 / 1736
页数:11
相关论文
共 36 条
[1]   A Hardware and Secure Pseudorandom Generator for Constrained Devices [J].
Bakiri, Mohammed ;
Guyeux, Christophe ;
Couchot, Jean-Francois ;
Marangio, Luigi ;
Galatolo, Stefano .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (08) :3754-3765
[2]   Hyperchaos in a second-order discrete memristor-based map model [J].
Bao, Bo-Cheng ;
Li, Houzhen ;
Wu, Huagan ;
Zhang, Xi ;
Chen, Mo .
ELECTRONICS LETTERS, 2020, 56 (15) :769-770
[3]   Chaotic Bursting Dynamics and Coexisting Multistable Firing Patterns in 3D Autonomous Morris-Lecar Model and Microcontroller-Based Validations [J].
Bao, Bocheng ;
Yang, Qinfeng ;
Zhu, Lei ;
Bao, Han ;
Xu, Quan ;
Yu, Yajuan ;
Chen, Mo .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (10)
[4]   Initials-Boosted Coexisting Chaos in a 2-D Sine Map and Its Hardware Implementation [J].
Bao, Han ;
Hua, Zhongyun ;
Wang, Ning ;
Zhu, Lei ;
Chen, Mo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (02) :1132-1140
[5]   Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera [J].
Bao, Han ;
Zhang, Yunzhen ;
Liu, Wenbo ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2020, 100 (01) :937-950
[6]   Hidden Bursting Firings and Bifurcation Mechanisms in Memristive Neuron Model With Threshold Electromagnetic Induction [J].
Bao, Han ;
Hu, Aihuang ;
Liu, Wenbo ;
Bao, Bocheng .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (02) :502-511
[7]   Stochastic Spiking-Bursting Excitability and Transition to Chaos in a Discrete-Time Neuron Model [J].
Bashkirtseva, Irina ;
Nasyrova, Venera ;
Ryashko, Lev .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (10)
[8]  
Bassham L., 2010, Special Publication (NIST SP)
[9]   Artificial Electrical Morris-Lecar Neuron [J].
Behdad, Rachid ;
Binczak, Stephane ;
Dmitrichev, Alexey S. ;
Nekorkin, Vladimir I. ;
Bilbault, Jean-Marie .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (09) :1875-1884
[10]   Speeding Up Cellular Neural Network Processing Ability by Embodying Memristors [J].
Bilotta, E. ;
Pantano, P. ;
Vena, S. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (05) :1228-1232