Bilinear Auto-Backlund Transformations and Similarity Reductions for a (3+1)-dimensional Generalized Yu-Toda-Sasa-Fukuyama System in Fluid Mechanics and Lattice Dynamics

被引:21
作者
Gao, Xin-Yi [1 ,2 ]
Guo, Yong-Jiang [1 ,2 ]
Shan, Wen-Rui [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Two-layer liquid; Lattice; (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system; Bilinear auto-Backlund transformations; Similarity reductions; Symbolic computation; KADOMTSEV-PETVIASHVILI EQUATION; WAVE SOLUTIONS; SOLITONS; PLASMA; LUMP;
D O I
10.1007/s12346-022-00622-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent investigations on the liquids and lattices are both active. In this paper, with symbolic computation, we consider a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system for the interfacial waves in a two-layer liquid or elastic waves in a lattice, with two sets of the bilinear auto-Backlund transformations hereby built up. Moreover, we construct one set of the similarity reductions, from that system to a known ordinary differential equation. As for the amplitude or elevation of the relevant wave, our results rely on the coefficients in that system.
引用
收藏
页数:16
相关论文
共 80 条
[71]   Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber [J].
Yang, Dan-Yu ;
Tian, Bo ;
Qu, Qi-Xing ;
Zhang, Chen-Rong ;
Chen, Su-Su ;
Wei, Cheng-Cheng .
CHAOS SOLITONS & FRACTALS, 2021, 150
[72]   Generalized Darboux transformation and the higher-order semirational solutions for a non-linear Schrodinger system in a birefringent fiber [J].
Yang, Dan-Yu ;
Tian, Bo ;
Qu, Qi-Xing ;
Yuan, Yu-Qiang ;
Zhang, Chen-Rong ;
Tian, He-Yuan .
MODERN PHYSICS LETTERS B, 2020, 34
[73]   Solitons and bilinear Backlund transformations for a (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice [J].
Yin, Hui-Min ;
Tian, Bo ;
Chai, Jun ;
Wu, Xiao-Yu ;
Sun, Wen-Rong .
APPLIED MATHEMATICS LETTERS, 2016, 58 :178-183
[74]   Ion-acoustic wave structures in the fluid ions modeled by higher dimensional generalized Korteweg-de Vries-Zakharov-Kuznetsov equation [J].
Younas, U. ;
Ren, J. ;
Baber, Muhammad Z. ;
Yasin, Muhammad W. ;
Shahzad, T. .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2023, 8 (06) :623-635
[75]   Unconventional characteristic line for the nonautonomous KP equation [J].
Yu, Xin ;
Sun, Zhi-Yuan .
APPLIED MATHEMATICS LETTERS, 2020, 100
[76]   Parabola solitons for the nonautonomous KP equation in fluids and plasmas [J].
Yu, Xin ;
Sun, Zhi-Yuan .
ANNALS OF PHYSICS, 2016, 367 :251-257
[77]   Auto-Backlund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma [J].
Zhou, Tian-Yu ;
Tian, Bo ;
Zhang, Chen-Rong ;
Liu, Shao-Hua .
EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08)
[78]  
Zhou TY, 2022, NONLINEAR DYNAM, V108, P2417, DOI 10.1007/s11071-022-07211-1
[79]   Backlund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves [J].
Zhou, Tian-Yu ;
Tian, Bo ;
Chen, Su-Su ;
Wei, Cheng-Cheng ;
Chen, Yu-Qi .
MODERN PHYSICS LETTERS B, 2021, 35 (35)
[80]  
Zwillinger D., 1997, Handbook of Differential Equations