Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model

被引:16
作者
Bouillard, Nicolas [2 ]
Eymard, Robert [3 ]
Herbin, Raphaele [1 ]
Montarnal, Philippe [1 ]
机构
[1] Univ Aix Marseille 1, LATP, UMR 6632, F-13453 Marseille, France
[2] CEA Saclay, DM2S SFME MTMS, Gif Sur Yvette, France
[3] Univ Paris 12, Champs sur Marne, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2007年 / 41卷 / 06期
关键词
diffusion; dissolution; precipitation; kinetics; finite volume method;
D O I
10.1051/m2an:2007047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modeling the kinetics of a precipitation dissolution reaction occurring in a porous medium where diffusion also takes place leads to a system of two parabolic equations and one ordinary differential equation coupled with a stiff reaction term. This system is discretized by a finite volume scheme which is suitable for the approximation of the discontinuous reaction term of unknown sign. Discrete solutions are shown to exist and converge towards a weak solution of the continuous problem. Uniqueness is proved under a Lipschitz condition on the equilibrium gap function. Numerical tests are shown which prove the efficiency of the scheme.
引用
收藏
页码:975 / 1000
页数:26
相关论文
共 50 条
  • [21] Large-Scale Model for the Dissolution of Heterogeneous Porous Formations: Theory and Numerical Validation
    Guo, Jianwei
    Laouafa, Farid
    Quintard, Michel
    TRANSPORT IN POROUS MEDIA, 2022, 144 (01) : 149 - 174
  • [22] Large-Scale Model for the Dissolution of Heterogeneous Porous Formations: Theory and Numerical Validation
    Jianwei Guo
    Farid Laouafa
    Michel Quintard
    Transport in Porous Media, 2022, 144 : 149 - 174
  • [23] ADM1 based mathematical model of trace element precipitation/dissolution in anaerobic digestion processes
    Maharaj, Bikash Chandra
    Mattei, Maria Rosaria
    Frunzo, Luigi
    van Hullebusch, Eric D.
    Esposito, Giovanni
    BIORESOURCE TECHNOLOGY, 2018, 267 : 666 - 676
  • [24] Analysis of One-Dimensional Advection–Diffusion Model with Variable Coefficients Describing Solute Transport in a Porous medium
    Munshoor Ahmed
    Qurat Ul Ain Zainab
    Shamsul Qamar
    Transport in Porous Media, 2017, 118 : 327 - 344
  • [25] Diffusion of a passive impurity through a porous media: fractal model in an unsaturated medium
    Park, Y
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 29 (01) : 35 - 40
  • [26] Diffusion of a passive impurity through a porous media: fractal model in an unsaturated medium
    Yung Park
    Journal of Mathematical Chemistry, 2001, 29 : 35 - 40
  • [27] A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous media
    Olivares, Manuela Bastidas
    Bringedal, Carina
    Pop, Iuliu Sorin
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 396
  • [28] NUMERICAL APPROACH TO SIMULATE DIFFUSION MODEL OF A FLUID-FLOW IN A POROUS MEDIA
    Aghdam, Yones Esmaeelzade
    Farnam, Behnaz
    Jafari, Hosein
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S255 - S261
  • [29] Analysis of One-Dimensional Advection-Diffusion Model with Variable Coefficients Describing Solute Transport in a Porous medium
    Ahmed, Munshoor
    Zainab, Qurat Ul Ain
    Qamar, Shamsul
    TRANSPORT IN POROUS MEDIA, 2017, 118 (03) : 327 - 344
  • [30] Parameter Identification of the Fractional-Order Mathematical Model for Convective Mass Transfer in a Porous Medium
    Pavlenko, Ivan
    Ochowiak, Marek
    Wlodarczak, Sylwia
    Krupinska, Andzelika
    Matuszak, Magdalena
    MEMBRANES, 2023, 13 (10)