Hyperplane sections in arithmetic hyperbolic manifolds

被引:63
作者
Bergeron, Nicolas [1 ]
Haglund, Frederic [3 ]
Wise, Daniel T. [2 ]
机构
[1] Univ Paris 06, CNRS, Inst Math Jussieu, UMR 7586, F-75252 Paris 05, France
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Univ Paris 11, Math Lab, F-91405 Orsay, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2011年 / 83卷
关键词
SUBGROUPS;
D O I
10.1112/jlms/jdq082
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the fundamental groups of 'standard' arithmetic hyperbolic manifolds virtually retract onto their geometrically finite subgroups. In particular, this implies that the homology groups of immersed totally geodesic hypersurfaces of compact arithmetic hyperbolic manifolds virtually inject in the homology groups of the ambient manifold.
引用
收藏
页码:431 / 448
页数:18
相关论文
共 27 条
[1]   The Bianchi groups are separable on geometrically finite subgroups [J].
Agol, I ;
Long, DD ;
Reid, AW .
ANNALS OF MATHEMATICS, 2001, 153 (03) :599-621
[2]  
Agol I., 2006, ARXIVMATH0612290
[3]   A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3-manifolds [J].
Baker, Mark ;
Cooper, Daryl .
JOURNAL OF TOPOLOGY, 2008, 1 (03) :603-642
[4]  
Bergeron N, 2002, GEOM FUNCT ANAL, V12, P437, DOI 10.1007/s00039-002-8253-9
[5]   Lefschetz properties for arithmetic real and complex hyperbolic manifolds [J].
Bergeron, N .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (20) :1089-1122
[6]  
Bergeron N., 2006, Mem. Soc. Math. Fr., V106
[7]  
BERGERON N, 2009, ARXIVMATH09083609
[8]  
Bergeron Nicolas., 2000, Enseign. Math, V46, P109
[9]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[10]   From wall spaces to CAT(0) cube complexes [J].
Chatterji, I ;
Niblo, G .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (5-6) :875-885