Quantum computing with superconducting phase qubits

被引:2
作者
Blatter, G [1 ]
Geshkenbein, VB
Fauchère, AL
Feigel'man, MV
Ioffe, LB
机构
[1] ETH Honggerberg, CH-8093 Zurich, Switzerland
[2] LD Landau Theoret Phys Inst, Moscow 117940, Russia
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
来源
PHYSICA C | 2001年 / 352卷 / 1-4期
关键词
quantum computing; qubits; SQUID's; unconventional superconductor; d-wave symmetry; Josephson junctions; multijunction loops;
D O I
10.1016/S0921-4534(00)01702-0
中图分类号
O59 [应用物理学];
学科分类号
摘要
The superconducting phase qubit combines Josephson junctions into superconducting loops and defines one of the promising solid state device implementations for quantum computing. Here, we propose two hardware realizations for superconducting phase qubits, where the first is based on 2 phi -periodic s-wave-d-wave-s-wave Josephson junctions, while the second proposal involves five Josephson junctions arranged in a loop which is frustrated by a re-junction, a Josephson junction with a ground state characterized by a pi -phase shift across. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [21] An elementary review on basic principles and developments of qubits for quantum computing
    Eunmi Chae
    Joonhee Choi
    Junki Kim
    [J]. Nano Convergence, 11
  • [22] Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
    Saffman, M.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (20)
  • [23] An elementary review on basic principles and developments of qubits for quantum computing
    Chae, Eunmi
    Choi, Joonhee
    Kim, Junki
    [J]. NANO CONVERGENCE, 2024, 11 (01)
  • [24] Quantum computing with qubits made from electrons on a helium film
    Dahm, AJ
    Karakurt, I
    Heilman, JA
    Peshek, TJ
    [J]. NOISE AND INFORMATION IN NANOELECTRONICS, SENSORS, AND STANDARDS II, 2004, 5472 : 44 - 50
  • [25] Qubits or Symbolic Substitutions for General-purpose Quantum Computing?
    Wu, C. H.
    [J]. 2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS, 2015, : 698 - 702
  • [26] Superconducting metamaterials and qubits
    Plourde, B. L. T.
    Wang, Haozhi
    Rouxinol, Francisco
    LaHaye, M. D.
    [J]. QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500
  • [27] Control and Readout Software for Superconducting Quantum Computing
    Guo, Cheng
    Liang, Futian
    Lin, Jin
    Xu, Yu
    Sun, Lihua
    Liu, Weiyue
    Liao, Shengkai
    Peng, Chengzhi
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2019, 66 (07) : 1222 - 1227
  • [28] A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics
    Jazaeri, Farzan
    Beckers, Arnout
    Tajalli, Armin
    Sallese, Jean-Michel
    [J]. PROCEEDINGS OF THE 2019 26TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2019), 2019, : 15 - 25
  • [29] Quantum computing in decoherence-free subspaces with coupled charge qubits
    Feng, Zhi-Bo
    Zhang, Xin-Ding
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (04) : 878 - 882
  • [30] One-way quantum computing in superconducting circuits
    Albarran-Arriagada, F.
    Alvarado Barrios, G.
    Sanz, M.
    Romero, G.
    Lamata, L.
    Retamal, J. C.
    Solano, E.
    [J]. PHYSICAL REVIEW A, 2018, 97 (03)