Inference on a distribution function from ranked set samples

被引:25
|
作者
Dumbgen, Lutz [1 ]
Zamanzade, Ehsan [2 ]
机构
[1] Univ Bern, Inst Math Stat & Actuarial Sci, Alpeneggstr 22, CH-3012 Bern, Switzerland
[2] Univ Isfahan, Dept Stat, Esfahan 8174673441, Iran
关键词
Conditional inference; Confidence band; Empirical process; Functional limit theorem; Moment equations; Imperfect ranking; Relative asymptotic efficiency; Unbalanced samples; CONFIDENCE; STATISTICS;
D O I
10.1007/s10463-018-0680-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider independent observations (Xi,Ri) with random or fixed ranks Ri, while conditional on Ri, the random variable Xi has the same distribution as the Ri-th order statistic within a random sample of size k from an unknown distribution function F. Such observation schemes are well known from ranked set sampling and judgment post-stratification. Within a general, not necessarily balanced setting we derive and compare the asymptotic distributions of three different estimators of the distribution function F: a stratified estimator, a nonparametric maximum-likelihood estimator and a moment-based estimator. Our functional central limit theorems generalize and refine previous asymptotic analyses. In addition, we discuss briefly pointwise and simultaneous confidence intervals for the distribution function with guaranteed coverage probability for finite sample sizes. The methods are illustrated with a real data example, and the potential impact of imperfect rankings is investigated in a small simulation experiment.
引用
收藏
页码:157 / 185
页数:29
相关论文
共 50 条
  • [1] Inference on a distribution function from ranked set samples
    Lutz Dümbgen
    Ehsan Zamanzade
    Annals of the Institute of Statistical Mathematics, 2020, 72 : 157 - 185
  • [2] Resampling based inference for a distribution function using censored ranked set samples
    Mahdizadeh, M.
    Strzalkowska-Kominiak, E.
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1285 - 1308
  • [3] Exponentially tilted empirical distribution function for ranked set samples
    Saeid Amiri
    Mohammad Jafari Jozani
    Reza Modarres
    Journal of the Korean Statistical Society, 2016, 45 : 176 - 187
  • [4] Exponentially tilted empirical distribution function for ranked set samples
    Amiri, Saeid
    Jozani, Mohammad Jafari
    Modarres, Reza
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (02) : 176 - 187
  • [5] Estimating the distribution function using k-tuple ranked set samples
    Ghosh, Kaushik
    Tiwari, Ram C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (04) : 929 - 949
  • [6] Estimation of Distribution Function Using Percentile Ranked Set Sampling
    Sevil, Yusuf Can
    Yildiz, Tugba Ozkal
    REVSTAT-STATISTICAL JOURNAL, 2023, 21 (01) : 39 - 62
  • [7] On uncertainty and information properties of ranked set samples
    Jozani, Mohammad Jafari
    Ahmadi, Jafar
    INFORMATION SCIENCES, 2014, 264 : 291 - 301
  • [8] Bayesian mixture modelling with ranked set samples
    Alvandi, Amirhossein
    Omidvar, Sedigheh
    Hatefi, Armin
    Jozani, Mohammad Jafari
    Ozturk, Omer
    Nematollahi, Nader
    STATISTICS IN MEDICINE, 2024, 43 (19) : 3723 - 3741
  • [9] Nonparametric confidence intervals for ranked set samples
    Ghosh, Santu
    Chatterjee, Arpita
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1689 - 1725
  • [10] Inference in the presence of ranking error in ranked set sampling
    Ozturk, Omer
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2008, 36 (04): : 577 - 594