Existence of homoclinic solutions for nonlinear second-order coupled systems

被引:5
作者
Minhos, Feliz [1 ]
de Sousa, Robert [2 ]
机构
[1] Univ Evora, Inst Invest & Formacao Avancada, Escola Ciencias & Tecnol, Dept Matemat,CIMA, Rua Romao Ramalho 59, P-7000671 Evora, Portugal
[2] Univ Cabo Verde, Fac Ciencias & Tecnol, Nucleo Matemat & Aplicacoes NUMAT, Campus Palmarejo 279, Praia, Cape Verde
关键词
Homoclinic solutions; Coupled systems; L-1-Caratheodory functions; Green's functions; Schauder's fixed-point theorem; Lower and upper solutions; PERIODIC-ORBITS; SOLITONS; EQUATION; PULSES;
D O I
10.1016/j.jde.2018.07.072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work presents sufficient conditions for the existence of homoclinic solutions for second order coupled discontinuous systems of differential equations on the real line without the usual growth condition in the literature. The arguments apply the fixed point theory, Green's functions technique, L-1-Caratheodory functions, lower and upper solutions and Schauder's fixed point theorem. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1414 / 1428
页数:15
相关论文
共 28 条
[1]   Dynamics of Coupled Cell Networks: Synchrony, Heteroclinic Cycles and Inflation [J].
Aguiar, M. ;
Ashwin, P. ;
Dias, A. ;
Field, M. .
JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (02) :271-323
[2]   An exact homoclinic orbit and its connection with the Rossler system [J].
Algaba, A. ;
Freire, E. ;
Gamero, E. ;
Rodriguez-Luis, A. J. .
PHYSICS LETTERS A, 2015, 379 (16-17) :1114-1121
[3]   Solitary Waves for Linearly Coupled Nonlinear Schrodinger Equations with Inhomogeneous Coefficients [J].
Belmonte-Beitia, Juan ;
Perez-Garcia, Victor M. ;
Torres, Pedro J. .
JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (04) :437-451
[4]   TWIN-HOLE DARK SOLITONS [J].
BURYAK, AV ;
KIVSHAR, YS .
PHYSICAL REVIEW A, 1995, 51 (01) :R41-R44
[5]   SOLITONS DUE TO 2ND-HARMONIC GENERATION [J].
BURYAK, AV ;
KIVSHAR, YS .
PHYSICS LETTERS A, 1995, 197 (5-6) :407-412
[6]   Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem [J].
Champneys, AR ;
Lord, GJ .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 102 (1-2) :101-124
[7]   Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics [J].
Champneys, AR .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :158-186
[8]   New existence of homoclinic orbits for a second-order Hamiltonian system [J].
Chen, Peng ;
Tang, X. H. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) :131-141
[9]  
Ermentrout GB, 2010, INTERD APPL MATH, V35, P1, DOI 10.1007/978-0-387-87708-2
[10]  
Feckan M, 2011, NONLINEAR PHYS SCI, P1