Symmetries in the path integral formulation of the Langevin dynamics

被引:1
|
作者
Surowka, Piotr [1 ]
Witkowski, Piotr [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
D O I
10.1103/PhysRevE.98.042140
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study dissipative Langevin dynamics in the path integral formulation using the Martin-Siggia-Rose formalism. The effective action is supersymmetric and we identify the supercharges. In addition we study the transformations generated by superderivatives, which were recently included in the cohomological structure emerging in the dissipative systems. We find that these transformations do not generate Ward identities, which are explicitly broken; however, they lead to universal sum-rule-type identities, which we derive from Schwinger-Dyson equations. We confirm that the above identities hold in an explicit example of the Ornstein-Uhlenbeck process.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] ON THE PATH INTEGRAL FORMULATION OF BROWNIAN DYNAMICS
    STEPANOW, S
    SOMMER, JU
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : L541 - L544
  • [2] The Path Integral Formulation of Climate Dynamics
    Navarra, Antonio
    Tribbia, Joe
    Conti, Giovanni
    PLOS ONE, 2013, 8 (06):
  • [3] Path integral approach to nonequilibrium potentials in multiplicative Langevin dynamics
    Barci, Daniel G.
    Arenas, Zochil Gonzalez
    Moreno, Miguel Vera
    EPL, 2016, 113 (01)
  • [4] Accelerating the convergence of path integral dynamics with a generalized Langevin equation
    Ceriotti, Michele
    Manolopoulos, David E.
    Parrinello, Michele
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08):
  • [5] A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat
    Liu, Jian
    Li, Dezhang
    Liu, Xinzijian
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (02):
  • [6] Continuum limit and preconditioned Langevin sampling of the path integral molecular dynamics
    Lu, Jianfeng
    Lu, Yulong
    Zhou, Zhennan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 423
  • [7] A path integral approach to the Langevin equation
    Das, Ashok K.
    Panda, Sudhakar
    Santos, J. R. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (07):
  • [8] LANGEVIN FORMULATION OF QUANTUM DYNAMICS
    RONCADELLI, M
    EUROPHYSICS LETTERS, 1991, 16 (07): : 609 - 615
  • [9] WAVE-PACKET PATH INTEGRAL FORMULATION OF SEMICLASSICAL DYNAMICS
    HELLER, EJ
    CHEMICAL PHYSICS LETTERS, 1975, 34 (02) : 321 - 325
  • [10] Langevin Equation Path Integral Ground State
    Constable, Steve
    Schmidt, Matthew
    Ing, Christopher
    Zeng, Tao
    Roy, Pierre-Nicholas
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (32): : 7461 - 7467