QUANTIFIED EQUALITY CONSTRAINTS

被引:13
作者
Bodirsky, Manuel [1 ]
Chen, Hubie [2 ]
机构
[1] Ecole Polytech, Lab Informat, LIX, CNRS,UMR 6171, F-75010 Paris, France
[2] Univ Pompeu Fabra, Dept Tecnol Informacio & Comunicac, Barcelona 08003, Spain
关键词
quantified constraint satisfaction; omega-categorical structures; computational complexity; SATISFACTION; TRACTABILITY;
D O I
10.1137/080725209
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An equality template is a relational structure with infinite universe whose relations can be defined by Boolean combinations of equalities. We prove a complexity classification for quantified constraint satisfaction problems (QCSPs) over equality templates: These problems are in L (decidable in logarithmic space), NP-hard, or coNP-hard. To establish our classification theorem we combine methods from universal algebra with concepts from model theory.
引用
收藏
页码:3682 / 3699
页数:18
相关论文
共 27 条
[11]  
Creignou N., 2001, SIAM MONOGR DISCRETE, V7
[12]  
Garey Michael, 1978, GUIDE NP COMPLETENES
[13]   FINITE CLONES CONTAINING ALL PERMUTATIONS [J].
HADDAD, L ;
ROSENBERG, IG .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1994, 46 (05) :951-970
[14]  
HELL P, 2004, SER MATH APPL, V28
[15]  
Hodges W., 1997, SHORTER MODEL THEORY
[16]   Tractability and learnability arising from algebras with few subpowers [J].
Idziak, Pawel ;
Markovic, Petar ;
McKenzie, Ralph ;
Valeriote, Matthew ;
Willard, Ross .
22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2007, :213-+
[17]   On the algebraic structure of combinatorial problems [J].
Jeavons, P .
THEORETICAL COMPUTER SCIENCE, 1998, 200 (1-2) :185-204
[18]   Closure properties of constraints [J].
Jeavons, P ;
Cohen, D ;
Gyssens, M .
JOURNAL OF THE ACM, 1997, 44 (04) :527-548
[19]   REDUCED PRODUCTS AND HORN CLASSES [J].
KEISLER, HJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 117 (05) :307-&
[20]   On tractability and congruence distributivity [J].
Kiss, Emil ;
Valeriote, Matthew .
21ST ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2006, :221-+