Slow observables of singularly perturbed differential equations

被引:30
作者
Artstein, Zvi [1 ]
Kevrekidis, Ioannis G.
Slemrod, Marshall
Titi, Edriss S.
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
[3] Princeton Univ, PACM, Princeton, NJ 08544 USA
[4] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[5] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
SYSTEMS; DYNAMICS;
D O I
10.1088/0951-7715/20/11/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Singularly perturbed systems which may not possess a natural coordinate split into slow and fast dynamics are examined. Their limit behaviour is depicted as an invariant measure of the fast component drifted by the slow part of the system. Slow observables capture then limit characteristics of the system, and may determine the evolution of the limit invariant measures.
引用
收藏
页码:2463 / 2481
页数:19
相关论文
共 24 条
[1]  
Anosov D V, 1960, IZV AKAD NAUK SSSR M, V24, P721
[2]   Invariant measures of differential inclusions applied to singular perturbations [J].
Artstein, Z .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) :289-307
[3]   Distributional convergence in planar dynamics and singular perturbations [J].
Artstein, Z .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 201 (02) :250-286
[4]   Singularly perturbed ordinary differential equations with dynamic limits [J].
Artstein, Z ;
Vigodner, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :541-569
[5]   SENSITIVITY WITH RESPECT TO THE UNDERLYING INFORMATION IN STOCHASTIC PROGRAMS [J].
ARTSTEIN, Z .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 56 (1-2) :127-136
[6]  
ARTSTEIN Z., 2003, FUNCTIONAL DIFFERENT, V10, P19
[7]  
Artstein Z., 2002, Mathematica Bohemica, V127, P139
[8]  
Artstein Z., 2004, STOCH DYNAM, V4, P439
[9]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[10]   The first-integral method to study the Burgers-Korteweg-de Vries equation [J].
Feng, ZS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02) :343-349