Robust smoothing: Smoothing parameter selection and applications to fluorescence spectroscopy

被引:27
|
作者
Lee, Jong Soo [1 ]
Cox, Dennis D. [2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[2] Rice Univ, Dept Stat, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
NONPARAMETRIC REGRESSION; SPLINES; MODEL;
D O I
10.1016/j.csda.2009.08.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fluorescence spectroscopy has emerged in recent years as an effective way to detect cervical cancer. Investigation of the data preprocessing stage uncovered a need for a robust smoothing to extract the signal from the noise. Various robust smoothing methods for estimating fluorescence emission spectra are compared and data driven methods for the selection of smoothing parameter are suggested. The methods currently implemented in R for smoothing parameter selection proved to be unsatisfactory, and a computationally efficient procedure that approximates robust leave-one-out cross validation is presented. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3131 / 3143
页数:13
相关论文
共 50 条