A Dynamical Method for Solving the Obstacle Problem

被引:8
作者
Ran, Qinghua [1 ,2 ]
Cheng, Xiaoliang [1 ]
Abide, Stephane [3 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
[2] Guizhou Univ, Sch Math & Stat, Guiyang, Peoples R China
[3] Univ Perpignan, Lab Math & Phys, Perpignan, France
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2020年 / 13卷 / 02期
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
Variational inequality; obstacle problem; dynamical system; dynamical functional partical method; MONOTONE MULTIGRID METHODS; ALGORITHM; INEQUALITIES; SYSTEM;
D O I
10.4208/nmtma.OA-2019-0109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the unilateral obstacle problem, trying to find the numerical solution and coincidence set. We construct an equivalent format of the original problem and propose a method with a second-order in time dissipative system for solving the equivalent format. Several numerical examples are given to illustrate the effectiveness and stability of the proposed algorithm. Convergence speed comparisons with existent numerical algorithm are also provided and our algorithm is fast.
引用
收藏
页码:353 / 371
页数:19
相关论文
共 27 条
[1]   A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics [J].
Alvarez, F ;
Attouch, H ;
Bolte, J ;
Redont, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (08) :747-779
[2]  
BREZIS H, 1971, ARCH RATION MECH AN, V41, P254
[3]  
Brezis H., 2010, FUNCTIONAL ANAL SOBL
[4]  
Brugnano L., 2012, J NUMERICAL ANAL IND, V6, P67
[5]   A NITSCHE-BASED METHOD FOR UNILATERAL CONTACT PROBLEMS: NUMERICAL ANALYSIS [J].
Chouly, Franz ;
Hild, Patrick .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :1295-1307
[6]  
Duvaut G., 1976, GRUNDLEHREN MATH WIS, V219, pxvi+397
[7]   Solving equations through particle dynamics [J].
Edvardsson, S. ;
Neuman, M. ;
Edstrom, P. ;
Olin, H. .
COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 :169-181
[8]   The Dynamical Functional Particle Method: An Approach for Boundary Value Problems [J].
Edvardsson, Sverker ;
Gulliksson, M. ;
Persson, J. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2012, 79 (02)
[9]  
Glowinski R., 1984, Numerical Methods for Nonlinear Variational Problems
[10]  
Glowinski R., 1981, NUMERICAL ANAL VARIA