On the extremal graphs with respect to the total reciprocal edge-eccentricity

被引:1
作者
Zhao, Lifang [1 ]
Li, Hongshuai [2 ]
Gao, Yuping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
[2] Zhongshan Overseas Chinese Secondary Sch, Zhongshan 528400, Guangdong, Peoples R China
关键词
Total reciprocal edge-eccentricity; Cut vertex; Eccentricity; Degree sequence; WIENER INDEX; DISTANCE SUM; CONNECTIVITY INDEX; TOPOLOGICAL DESCRIPTOR; TREES; VALUES;
D O I
10.1007/s10878-019-00458-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The total reciprocal edge-eccentricity of a graph G is defined as xi(ee)(G) = Sigma(u is an element of VG) d(G)(u)/epsilon(G)(u), where d(G)(u) is the degree of u and epsilon(G)(u) is the eccentricity of u. In this paper, we first characterize the unique graph with the maximum total reciprocal edge-eccentricity among all graphs with a given number of cut vertices. Then we determine the k-connected bipartite graphs of order n with diameter d having the maximum total reciprocal edge-eccentricity. Finally, we identify the unique tree with the minimum total reciprocal edge-eccentricity among the n-vertex trees with given degree sequence.
引用
收藏
页码:115 / 137
页数:23
相关论文
共 46 条
[1]   Wiener polarity index of fullerenes and hexagonal systems [J].
Behmaram, A. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. .
APPLIED MATHEMATICS LETTERS, 2012, 25 (10) :1510-1513
[2]  
Bondy U. S. R., 2008, Graph theory
[3]  
Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
[4]   DEGREE DISTANCE OF A GRAPH - A DEGREE ANALOG OF THE WIENER INDEX [J].
DOBRYNIN, AA ;
KOCHETOVA, AA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1994, 34 (05) :1082-1086
[5]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[6]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[7]  
ENTRINGER RC, 1976, CZECH MATH J, V26, P283
[8]   Extremal values on the eccentric distance sum of trees [J].
Geng, Xianya ;
Li, Shuchao ;
Zhang, Meng .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2427-2439
[9]   Hitting Times, Cover Cost, and the Wiener Index of a Tree [J].
Georgakopoulos, Agelos ;
Wagner, Stephan .
JOURNAL OF GRAPH THEORY, 2017, 84 (03) :311-326
[10]   Connective eccentricity index: A novel topological descriptor for predicting biological activity [J].
Gupta, S ;
Singh, A ;
Madan, AK .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2000, 18 (01) :18-25