SELECTION EFFECTS IN GAMMA-RAY BURST CORRELATIONS: CONSEQUENCES ON THE RATIO BETWEEN GAMMA-RAY BURST AND STAR FORMATION RATES

被引:58
|
作者
Dainotti, M. G. [1 ,2 ,3 ]
Del Vecchio, R. [3 ]
Shigehiro, N. [1 ]
Capozziello, S. [4 ,5 ,6 ]
机构
[1] RIKEN, Astrophys Big Bang Lab, Wako, Saitama 3510198, Japan
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Uniwersytet Jagiellonski, Obserwatorium Astron, PL-31501 Krakow, Poland
[4] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy
[5] INFN Sez Napoli, I-80126 Naples, Italy
[6] Gran Sasso Sci Inst INFN, I-67100 Laquila, Italy
关键词
gamma-ray burst: general; methods: data analysis; radiation mechanisms: non-thermal; stars: statistics; MAGNETAR CENTRAL ENGINES; PLATEAU-PHASE; LUMINOSITY CORRELATIONS; REDSHIFT DISTRIBUTION; PEAK LUMINOSITY; AFTERGLOW; LONG; EMISSION; EVOLUTION; ENERGY;
D O I
10.1088/0004-637X/800/1/31
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gamma-ray bursts (GRBs) visible up to very high redshift have become attractive targets as potential new distance indicators. It is still not clear whether the relations proposed so far originate from an unknown GRB physics or result from selection effects. We investigate this issue in the case of the L-X-T-a* a (hereafter LT) correlation between the X-ray luminosity L-X (T-a) at the end of the plateau phase, T-a, and the rest-frame time T-a*. We devise a general method to build mock data sets starting from a GRB world model and taking into account selection effects on both time and luminosity. This method shows how not knowing the efficiency function could influence the evaluation of the intrinsic slope of any correlation and the GRB density rate. We investigate biases (small offsets in slope or normalization) that would occur in the LT relation as a result of truncations, possibly present in the intrinsic distributions of L-X and T-a*. We compare these results with the ones in Dainotti et al. showing that in both cases the intrinsic slope of the LT correlation is approximate to-1.0. This method is general and therefore relevant for investigating whether or not any other GRB correlation is generated by the biases themselves. Moreover, because the farthest GRBs and star-forming galaxies probe the reionization epoch, we evaluate the redshift-dependent ratio Psi(z) = (1 + z)(alpha) of the GRB rate to the star formation rate. We found a modest evolution -0.2 <= alpha <= 0.5 consistent with a Swift GRB afterglow plateau in the redshift range 0.99 < z < 9.4.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] FAST RADIO BURST/GAMMA-RAY BURST COSMOGRAPHY
    Gao, He
    Li, Zhuo
    Zhang, Bing
    ASTROPHYSICAL JOURNAL, 2014, 788 (02)
  • [32] Gamma-ray burst class properties
    Hakkila, J
    Haglin, DJ
    Pendleton, GN
    Mallozzi, RS
    Meegan, CA
    Roiger, RJ
    ASTROPHYSICAL JOURNAL, 2000, 538 (01) : 165 - 180
  • [33] Theory of Gamma-Ray Burst Afterglows
    Panaitescu, A.
    PROBING STELLAR POPULATIONS OUT TO THE DISTANT UNIVERSE, 2009, 1111 : 362 - 369
  • [34] Calibration of Gamma-Ray Burst Luminosity Correlations Using Gravitational Waves as Standard Sirens
    Wang, Y. Y.
    Wang, F. Y.
    ASTROPHYSICAL JOURNAL, 2019, 873 (01)
  • [35] A SIZE-DURATION TREND FOR GAMMA-RAY BURST PROGENITORS
    Barnacka, Anna
    Loeb, Abraham
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 794 (01)
  • [36] GAMMA-RAY BURST JET DYNAMICS
    Granot, J.
    GAMMA-RAY BURSTS: 15 YEARS OF GRB AFTERGLOWS - PROGENITORS, ENVIRONMENTS AND HOST GALAXIES FROM THE NEARBY TO THE EARLY UNIVERSE, 2013, 61 : 141 - 152
  • [37] The redshift dependence of long gamma-ray burst intrinsic properties
    Zhang, Fu-Wen
    Shao, Lang
    Fan, Yi-Zhong
    Wei, Da-Ming
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 350 (02) : 691 - 699
  • [38] Stochastic acceleration model of gamma-ray burst with decaying turbulence
    Asano, Katsuaki
    Terasawa, Toshio
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (02) : 2242 - 2248
  • [39] Systematics in the gamma-ray burst Hubble diagram
    Cardone, V. F.
    Perillo, M.
    Capozziello, S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 417 (03) : 1672 - 1683
  • [40] Inverse Compton signatures of gamma-ray burst afterglows
    Zhang, H.
    Christie, I. M.
    Petropoulou, M.
    Rueda-Becerril, J. M.
    Giannios, D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (01) : 974 - 986