Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield

被引:53
作者
Mendez, Lara [1 ]
Mahdy, Ahmed [1 ]
Ballesteros, Mercedes [1 ,2 ]
Gonzalez-Fernandez, Cristina [1 ]
机构
[1] IMDEA Energy, Madrid 28935, Spain
[2] CIEMAT, E-28040 Madrid, Spain
关键词
Microalgae; Cyanobacteria; Growth rate; Macromolecular profile; Methane production; TAIHU BLUE ALGAE; ANAEROBIC-DIGESTION; METHANE PRODUCTION; GROWTH-RATES; SWINE SLURRY; WASTE-WATER; MICROALGAE; CARBOHYDRATE; PRETREATMENT; SUBSTANCES;
D O I
10.1016/j.enconman.2014.11.050
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of the present study was to compare cyanobacteria strains (Aphanizomenon ovalisporum, Anabaena planctonica, Borzia trilocularis and Synechocystis sp.) and microalgae (Chlorella vulgaris) in terms of growth rate, biochemical profile and methane production. Cyanobacteria growth rate ranged 0.5-0.6 day(-1) for A. planctonica, A. ovalisporum and Synecochystis sp. and 0.4 day(-1) for B. tricularis. Opposite, C. vulgaris maximum growth rate was double (1.2 day(-1)) than that of cyanobacteria. Regarding the methane yield, microalgae C. vulgaris averaged 120 mL CH4 g COD in(-1) due to the presence of a strong cell wall. On the other hand, anaerobic digestion of cyanobacteria supported higher methane yields. B. trilocularis and A. planctonica presented 1.42-fold higher methane yield than microalgae while this value was raised to approximately 1.85-fold for A. ovalisporum and Synechochystis sp. In the biogas production context, this study showed that the low growth rates of cyanobacteria can be overcome by their increased anaerobic digestibility when compared to their microalgae counterpartners, such is the case of C vulgaris. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 32 条
[1]   Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes [J].
Aikawa, Shimpei ;
Joseph, Ancy ;
Yamada, Ryosuke ;
Izumi, Yoshihiro ;
Yamagishi, Takahiro ;
Matsuda, Fumio ;
Kawai, Hiroshi ;
Chang, Jo-Shu ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1844-1849
[2]   Assessment of the anaerobic biodegradability of macropollutants [J].
Angelidaki I. ;
Sanders W. .
Re/Views in Environmental Science & Bio/Technology, 2004, 3 (2) :117-129
[3]  
Baird R.B., 2005, Standard methods for the examination of water and wastewater
[4]   Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake [J].
Bouterfas, R ;
Belkoura, M ;
Dauta, A .
HYDROBIOLOGIA, 2002, 489 (1-3) :207-217
[5]   A cost-effective strategy for the bio-prospecting of mixed microalgae with high carbohydrate content: Diversity fluctuations in different growth media [J].
Cea-Barcia, Glenda ;
Buitron, German ;
Moreno, Gloria ;
Kumar, Gopalakrishnan .
BIORESOURCE TECHNOLOGY, 2014, 163 :370-373
[6]   Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach [J].
Domis, Lisette N. De Senerpont ;
Mooij, Wolf M. ;
Huisman, Jef .
HYDROBIOLOGIA, 2007, 584 (1) :403-413
[7]   A COLORIMETRIC METHOD FOR THE DETERMINATION OF SUGARS [J].
DUBOIS, M ;
GILLES, K ;
HAMILTON, JK ;
REBERS, PA ;
SMITH, F .
NATURE, 1951, 168 (4265) :167-167
[8]   Protein measurements of microalgal and cyanobacterial biomass [J].
Gonzalez Lopez, Cynthia Victoria ;
Ceron Garcia, Maria del Carmen ;
Acien Fernandez, Francisco Gabriel ;
Bustos, Cristina Segovia ;
Chisti, Yusuf ;
Fernandez Sevilla, Jose Maria .
BIORESOURCE TECHNOLOGY, 2010, 101 (19) :7587-7591
[9]   Thermal pretreatment to improve methane production of Scenedesmus biomass [J].
Gonzalez-Fernandez, C. ;
Sialve, B. ;
Bernet, N. ;
Steyer, J. P. .
BIOMASS & BIOENERGY, 2012, 40 :105-111
[10]   Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production [J].
Gonzalez-Fernandez, C. ;
Sialve, B. ;
Bernet, N. ;
Steyer, J. P. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2012, 6 (02) :205-218