Exploiting parallelism to support scalable hierarchical clustering

被引:5
作者
Cathey, Rebecca J. [1 ]
Jensen, Eric C. [1 ]
Beitzel, Steven M. [1 ]
Frieder, Ophir [1 ]
Grossman, David [1 ]
机构
[1] IIT, Informat Retrieval Lab, Dept Comp Sci, Chicago, IL 60616 USA
来源
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY | 2007年 / 58卷 / 08期
关键词
D O I
10.1002/asi.20596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A distributed memory parallel version of the group average hierarchical agglomerative clustering algorithm is proposed to enable scaling the document clustering problem to large collections. Using standard message passing operations reduces interprocess communication while maintaining efficient load balancing. In a series of experiments using a subset of a standard Text REtrieval Conference (TREC) test collection, our parallel hierarchical clustering algorithm is shown to be scalable in terms of processors efficiently used and the collection size. Results show that our algorithm performs close to the expected O(n(2)/p) time on p processors rather than the worst-case O(n(3)/p) time. Furthermore, the O(n(2)/p) memory complexity per node allows larger collections to be clustered as the number of nodes increases. While partitioning algorithms such as k-means are trivially parallelizable, our results confirm those of other studies which showed that hierarchical algorithms produce significantly tighter clusters in the document clustering task. Finally, we show how our parallel hierarchical agglomerative clustering algorithm can be used as the clustering subroutine for a parallel version of the buckshot algorithm to cluster the complete TREC collection at near theoretical runtime expectations.
引用
收藏
页码:1207 / 1221
页数:15
相关论文
共 53 条
[1]  
Anderberg M.R., 1973, Probability and Mathematical Statistics
[2]  
[Anonymous], 2004, P 13 ACM INT C INF K, DOI DOI 10.1145/1031171.1031233
[3]  
[Anonymous], 1975, CLUSTERING ALGORITHM
[4]  
[Anonymous], 1988, ALGORITHMS CLUSTERIN
[5]  
[Anonymous], 2005, P 14 ACM INT C INF K
[6]  
[Anonymous], UWCSE010302
[7]  
[Anonymous], 2002, CLUTO A CLUSTERING T
[8]  
BAKER M, 1999, INT WORKSH JAV PAR D
[9]  
Bradley P. S., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P9
[10]   Damage based formability analysis of sheet metal with LS-DYNA [J].
Chow, CL ;
Tai, WH .
INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2000, 9 (03) :241-254