An adaptive decomposition-based evolutionary algorithm for many-objective optimization

被引:49
作者
Han, Dong [1 ]
Du, Wenli [1 ]
Du, Wei [1 ]
Jin, Yaochu [1 ,2 ]
Wu, Chunping [3 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[2] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, Surrey, England
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Evolutionary multi-objective optimization; Many-objective optimization; Decomposition; Convergence; Diversity; Penalty boundary intersection; Adaptation; ARTICULATION; MOEA/D;
D O I
10.1016/j.ins.2019.03.062
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Penalty boundary intersection (PBI) is one popular method in decomposition based evolutionary multi-objective algorithms, where the penalty factor is crucial for striking a balance between convergence and diversity in a high-dimensional objective space. Meanwhile, the distribution of the obtained solutions highly depends on the setting of the weight vectors. This paper proposes an adaptive decomposition-based evolutionary algorithm for many-objective optimization, which introduces one adaptation mechanism for PBI-based decomposition and the other for adjusting the weight vector. The former assigns a specific penalty factor for each subproblem by using the distribution information of both population and the weight vectors, while the latter adjusts the weight vectors based on the objective ranges to handle problems with different scales on the objectives. We have compared the proposed algorithm with seven state-of-the-art many-objective evolutionary algorithms on a number of benchmark problems. The empirical results demonstrate the superiority of the proposed algorithm. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 222
页数:19
相关论文
共 50 条
[1]  
Batista LS, 2011, IEEE C EVOL COMPUTAT, P2359
[2]   A Reference Vector Guided Evolutionary Algorithm for Many-Objective Optimization [J].
Cheng, Ran ;
Jin, Yaochu ;
Olhofer, Markus ;
Sendhoff, Bernhard .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2016, 20 (05) :773-791
[3]   A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems [J].
Das, I ;
Dennis, JE .
STRUCTURAL OPTIMIZATION, 1997, 14 (01) :63-69
[4]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]  
Deb K., 1995, Complex Systems, V9, P115
[7]  
Deb K., 1996, Comput. Sci. Inf., V26, P30, DOI DOI 10.1109/TEVC.2007.895269
[8]   An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints [J].
Deb, Kalyanmoy ;
Jain, Himanshu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (04) :577-601
[9]   Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches [J].
Deb, Kalyanmoy ;
Miettinen, Kaisa ;
Chaudhuri, Shamik .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (06) :821-841
[10]  
Fleischer M, 2003, LECT NOTES COMPUT SC, V2632, P519