Study of the non-viscous equatorial shallow water system

被引:4
作者
Mullaert, Chloe [1 ]
机构
[1] Lab Jacques Louis Lions, Paris 6, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 99卷 / 03期
关键词
Shallow water system; Kelvin wave; Filtering method; Burger equation; SINGULAR LIMITS;
D O I
10.1016/j.matpur.2012.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to prove the convergence of solutions of penalized systems describing given by equatorial shallow water equations without viscosity towards the solution of the limit system, generalizing the results of A. Dutrifoy, A. Majda and S. Schochet (2009) in [3] to all initial data even ill-prepared. A similar result is proved by I. Gallagher and L. Saint-Raymond (2006) in [4] but with a viscous fluid. We will also give a necessary and sufficient condition for a global existence of the solution of the limit system proving that the Kelvin waves lead to an explosion in finite time as a Burger equation. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:251 / 279
页数:29
相关论文
共 15 条
[1]   GEOMETRIC BLOWUP FOR QUASI-LINEAR SYSTEMS [J].
ALINHAC, S .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) :987-1017
[2]  
[Anonymous], COMPRESSIBLE FLUID F
[3]  
[Anonymous], 1982, INT GEOPHYS SERIES
[4]  
[Anonymous], CAMBRIDGE MONOGRAPHS
[5]   An asymmetric penalization problem [J].
Chemin, JY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (09) :739-755
[6]   A Simple Justification of the Singular Limit for Equatorial Shallow-Water Dynamics [J].
Dutrifoy, Alexandre ;
Majda, Andrew J. ;
Schochet, Steven .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (03) :322-333
[7]  
Gallagher I., 2006, MEMOIRES SOC MATH FR, V107
[8]  
Gallagher I, 2007, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL IV, P201
[9]   Oscillatory perturbations of the Navier Stokes equations [J].
Grenier, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (06) :477-498
[10]   GENERIC RIGOROUS ASYMPTOTIC EXPANSIONS FOR WEAKLY NONLINEAR MULTIDIMENSIONAL OSCILLATORY WAVES [J].
JOLY, JL ;
METIVIER, G ;
RAUCH, J .
DUKE MATHEMATICAL JOURNAL, 1993, 70 (02) :373-404