A Krylov projection method for systems of ODEs

被引:36
作者
Celledoni, E
Moret, I
机构
[1] Dipartimento di Scienze Matematiche, Università di Trieste, 34127 Trieste
关键词
ordinary differential equations; initial value problems; Krylov subspace methods;
D O I
10.1016/S0168-9274(97)00033-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider approximations of solutions of IVPs obtained through projections into Krylov subspaces. Numerical experiments on parabolic equations illustrate the performance of the method. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:365 / 378
页数:14
相关论文
共 9 条
[1]  
CELLEDONI E, 1994, QUAD MAT
[2]   EFFICIENT SOLUTION OF PARABOLIC EQUATIONS BY KRYLOV APPROXIMATION METHODS [J].
GALLOPOULOS, E ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05) :1236-1264
[3]  
HOCHBRUCK M, UNPUB SIAM J NUMER A
[4]  
Lancaster P, 1985, THEORY MATRICES
[5]   ACCELERATING WAVE-FORM RELAXATION METHODS WITH APPLICATION TO PARALLEL SEMICONDUCTOR-DEVICE SIMULATION [J].
LUMSDAINE, A ;
WHITE, JK .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1995, 16 (3-4) :395-414
[6]   GLOBAL CONVERGENCE OF BASIC QR ALGORITHM ON HESSENBERG MATRICES [J].
PARLETT, B .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :803-&
[7]  
Pietsch A, 1987, Cambridge Studies in Advanced Mathematics, V13
[8]   ANALYSIS OF SOME KRYLOV SUBSPACE APPROXIMATIONS TO THE MATRIX EXPONENTIAL OPERATOR [J].
SAAD, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :209-228
[9]  
SAAD Y, 1981, MATH COMPUT, V37, P105, DOI 10.1090/S0025-5718-1981-0616364-6