Physics input for modelling superfluid neutron stars with hyperon cores

被引:55
|
作者
Gusakov, M. E. [1 ,2 ]
Haensel, P. [3 ]
Kantor, E. M. [1 ]
机构
[1] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[2] St Petersburg State Polytech Univ, St Petersburg 195251, Russia
[3] Polish Acad Sci, N Copernicus Astron Ctr, PL-00716 Warsaw, Poland
关键词
stars: interiors; stars: neutron; stars: oscillations; MEAN-FIELD THEORY; HYPERNUCLEI; POTENTIALS; LAMBDA;
D O I
10.1093/mnras/stt2438
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations of massive (M approximate to 2.0M(circle dot)) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here, we construct three possible models of nucleon-hyperon matter consistent with the existence of 2M(circle dot) pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving sigma omega rho phi sigma* meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the l = 0, 1 Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. Use of this scheme allow us to obtain numerical tables with the equation of state, Landau quasi-particle effective masses, adiabatic indices, the l = 0, 1 Landau Fermi-liquid parameters, and the relativistic entrainment matrix for the selected models of nucleon-hyperon matter. These data are available online and suitable for numerical implementation in computer codes modelling various dynamical processes in NSs, in particular, oscillations of superfluid NSs and their cooling.
引用
收藏
页码:318 / 333
页数:16
相关论文
共 50 条
  • [1] r-modes of neutron stars with superfluid cores
    Lee, U
    Yoshida, SJ
    ASTROPHYSICAL JOURNAL, 2003, 586 (01): : 403 - 418
  • [2] Thermal luminosity degeneracy of magnetized neutron stars with and without hyperon cores
    Anzuini, F.
    Melatos, A.
    Dehman, C.
    Vigano, D.
    Pons, J. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (02) : 3014 - 3027
  • [3] Superfluid hyperon bulk viscosity and the r-mode instability of rotating neutron stars
    Haskell, B.
    Andersson, N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (03) : 1897 - 1915
  • [4] Dissipation in relativistic superfluid neutron stars
    Gusakov, M. E.
    Kantor, E. M.
    Chugunov, A. I.
    Gualtieri, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (02) : 1518 - 1536
  • [5] Oscillations of superfluid hyperon stars: decoupling scheme and g-modes
    Dommes, V. A.
    Gusakov, M. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (03) : 2852 - 2870
  • [6] Hyperons and massive neutron stars: The role of hyperon potentials
    Weissenborn, S.
    Chatterjee, D.
    Schaffner-Bielich, J.
    NUCLEAR PHYSICS A, 2012, 881 : 62 - 77
  • [7] Dynamical tides in coalescing superfluid neutron star binaries with hyperon cores and their detectability with third-generation gravitational-wave detectors
    Yu, Hang
    Weinberg, Nevin N.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (01) : 350 - 360
  • [8] On the dynamics of superfluid neutron star cores
    Andersson, N
    Comer, GL
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 328 (04) : 1129 - 1143
  • [9] Neutron stars with hyperon cores: stellar radii and equation of state near nuclear density
    Fortin, M.
    Zdunik, J. L.
    Haensel, P.
    Bejger, M.
    ASTRONOMY & ASTROPHYSICS, 2015, 576
  • [10] Hyperon Effects on the Spin Parameter of Rotating Neutron Stars
    Qi Bin
    Zhang Nai-Bo
    Wang Shou-Yu
    Sun Bao-Yuan
    CHINESE PHYSICS LETTERS, 2015, 32 (11)