Modulation of amyloid precursor protein cleavage by cellular sphingolipids

被引:71
作者
Sawamura, N
Ko, MH
Yu, WX
Zou, K
Hanada, K
Suzuki, T
Gong, JS
Yanagisawa, K
Michikawa, M
机构
[1] Natl Inst Longev Sci, Dept Dementia Res, Aichi 4748522, Japan
[2] Japan Soc Promot Sci, Tokyo 1028471, Japan
[3] Natl Inst Infect Dis, Dept Biochem & Cell Biol, Shinjuku Ku, Tokyo 1628640, Japan
[4] Hokkaido Univ, Grad Sch Pharmaceut Sci, Neurosci Lab, Sapporo, Hokkaido 0600812, Japan
[5] Org Pharmaceut Safety & Res Japan, Tokyo 1000013, Japan
关键词
D O I
10.1074/jbc.M309832200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Lipid rafts and their component, cholesterol, modulate the processing of beta-amyloid precursor protein (APP). However, the role of sphingolipids, another major component of lipid rafts, in APP processing remains undetermined. Here we report the effect of sphingolipid deficiency on APP processing in Chinese hamster ovary cells treated with a specific inhibitor of serine palmitoyltransferase, which catalyzes the first step of sphingolipid biosynthesis, and in a mutant LY-B strain defective in the LCB1 subunit of serine palmitoyltransferase. We found that in sphingolipid-deficient cells, the secretion of soluble APPalpha (sAPPalpha) and the generation of C-terminal fragment cleaved at alpha-site dramatically increased, whereas epsilon-cleavage activity remained unchanged, and the epsilon-cleavage activity decreased without alteration of the total APP level. The secretion of amyloid beta-protein 42 increased in sphingolipid-deficient cells, whereas that of amyloid beta-protein 40 did not. All of these alterations were restored in sphingolipid-deficient cells by adding exogenous sphingosine and in LY-B cells by transfection with cLCB1. Sphingolipid deficiency increased MAPK/ERK activity and a specific inhibitor of MAPK kinase, PD98059, restored sAPPalpha level, indicating that sphingolipid deficiency enhances sAPPalpha secretion via activation of MAPK/ERK pathway. These results suggest that not only the cellular level of cholesterol but also that of sphingolipids may be involved in the pathological process of Alzheimer's disease by modulating APP cleavage.
引用
收藏
页码:11984 / 11991
页数:8
相关论文
共 62 条
[1]   The caveolae membrane system [J].
Anderson, RGW .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :199-225
[2]   LONG AMYLOID BETA-PROTEIN SECRETED FROM WILD-TYPE HUMAN NEUROBLASTOMA IMR-32 CELLS [J].
ASAMIODAKA, A ;
ISHIBASHI, Y ;
KIKUCHI, T ;
KITADA, C ;
SUZUKI, N .
BIOCHEMISTRY, 1995, 34 (32) :10272-10278
[3]   Non-steroidal anti-inflammatory drugs stimulate secretion of non-amyloidogenic precursor protein [J].
Avramovich, Y ;
Amit, T ;
Youdim, MBH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (35) :31466-31473
[4]  
Bodovitz S, 1996, J BIOL CHEM, V271, P4436
[5]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[6]   PROTEIN-PHOSPHORYLATION INHIBITS PRODUCTION OF ALZHEIMER AMYLOID-BETA/A4 PEPTIDE [J].
BUXBAUM, JD ;
KOO, EH ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (19) :9195-9198
[7]   CHOLINERGIC AGONISTS AND INTERLEUKIN-1 REGULATE PROCESSING AND SECRETION OF THE ALZHEIMER BETA/A4 AMYLOID PROTEIN-PRECURSOR [J].
BUXBAUM, JD ;
OISHI, M ;
CHEN, HI ;
PINKASKRAMARSKI, R ;
JAFFE, EA ;
GANDY, SE ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10075-10078
[8]   PROTEIN-PHOSPHORYLATION REGULATES SECRETION OF ALZHEIMER-BETA-A4 AMYLOID PRECURSOR PROTEIN [J].
CAPORASO, GL ;
GANDY, SE ;
BUXBAUM, JD ;
RAMABHADRAN, TV ;
GREENGARD, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (07) :3055-3059
[9]   Presenilin 1 mutations activate γ42-secretase but reciprocally inhibit ε-secretase cleavage of amyloid precursor protein (APP) and S3-cleavage of Notch [J].
Chen, FS ;
Gu, YJ ;
Hasegawa, H ;
Ruan, XY ;
Arawaka, S ;
Fraser, P ;
Westaway, D ;
Mount, H ;
St George-Hyslop, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (39) :36521-36526
[10]  
De Strooper B, 2000, J CELL SCI, V113, P1857