Image analysis and artificial intelligence in infectious disease diagnostics

被引:54
作者
Smith, K. P. [1 ,2 ]
Kirby, J. E. [1 ,2 ]
机构
[1] Beth Israel Deaconess Med Ctr, Dept Pathol, Boston, MA 02215 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
关键词
Artificiall intelligence; Deep learning; Gram stain; Machine learning; BACTERIAL VAGINOSIS; CHROMOGENIC MEDIA;
D O I
10.1016/j.cmi.2020.03.012
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Microbiologists are valued for their time-honed skills in image analysis, including identification of pathogens and inflammatory context in Gram stains, ova and parasite preparations, blood smears and histopathologic slides. They also must classify colony growth on a variety of agar plates for triage and assessment. Recent advances in image analysis, in particular application of artificial intelligence (AI), have the potential to automate these processes and support more timely and accurate diagnoses. Objectives: To review current AI-based image analysis as applied to clinical microbiology; and to discuss future trends in the field. Sources: Material sourced for this review included peer-reviewed literature annotated in the PubMed or Google Scholar databases and preprint articles from bioRxiv. Articles describing use of AI for analysis of images used in infectious disease diagnostics were reviewed. Content: We describe application of machine learning towards analysis of different types of microbiologic image data. Specifically, we outline progress in smear and plate interpretation as well as the potential for AI diagnostic applications in the clinical microbiology laboratory. (C) 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1318 / 1323
页数:6
相关论文
共 24 条
[1]  
Barry-Straume Jostein., 2018, SMU Data Sci. Rev, V1, P12
[2]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[3]   Automatic Digital Analysis of Chromogenic Media for Vancomycin-Resistant- Enterococcus Screens Using Copan WASPLab [J].
Faron, Matthew L. ;
Buchan, Blake W. ;
Coon, Christopher ;
Liebregts, Theo ;
van Bree, Anita ;
Jansz, Arjan R. ;
Soucy, Genevieve ;
Korver, John ;
Ledeboer, Nathan A. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2016, 54 (10) :2464-2469
[4]   Automated Scoring of Chromogenic Media for Detection of Methicillin-Resistant Staphylococcus aureus by Use of WASPLab Image Analysis Software [J].
Faron, Matthew L. ;
Buchan, Blake W. ;
Vismara, Chiara ;
Lacchini, Carla ;
Bielli, Alessandra ;
Gesu, Giovanni ;
Liebregts, Theo ;
van Bree, Anita ;
Jansz, Arjan ;
Soucy, Genevieve ;
Korver, John ;
Ledeboer, Nathan A. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2016, 54 (03) :620-624
[5]  
Faron ML, 2019, J CLIN MICROBIOL, V58, P19
[6]   Bacterial colony counting with Convolutional Neural Networks in Digital Microbiology Imaging [J].
Ferrari, Alessandro ;
Lombardi, Stefano ;
Signoroni, Alberto .
PATTERN RECOGNITION, 2017, 61 :629-640
[7]   The American Society for Clinical Pathology's 2016-2017 Vacancy Survey of Medical Laboratories in the United States [J].
Garcia, Edna ;
Kundu, Iman ;
Ali, Asma ;
Soles, Ryan .
AMERICAN JOURNAL OF CLINICAL PATHOLOGY, 2018, 149 (05) :387-400
[8]   The Molecular and Systems Biology of Memory [J].
Kandel, Eric R. ;
Dudai, Yadin ;
Mayford, Mark R. .
CELL, 2014, 157 (01) :163-186
[9]   Automatic Digital Plate Reading for Surveillance Cultures [J].
Kirn, Thomas J. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2016, 54 (10) :2424-2426
[10]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444