Unified majorizing sequences for Traub-type multipoint iterative procedures

被引:4
作者
Argyros, I. K. [1 ]
Gonzalez, D. [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ La Rioja, Dept Math & Computat, Logrono, La Rioja, Spain
关键词
Multipoint iterative procedure; Banach space; majorizing sequence; Freechet derivative; Divided difference; Semilocal convergence; SEMILOCAL CONVERGENCE ANALYSIS; NEWTON-LIKE METHODS;
D O I
10.1007/s11075-012-9678-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a unified approach to generating majorizing sequences for multipoint iterative procedures in order to solve nonlinear equations in a Banach space setting. The semilocal convergence results have the following advantages over earlier work (under the same computational cost): weaker sufficient convergence conditions, more precise error bounds on the distances involved and more precise information on the location of the solution. Special cases and numerical examples are also provided in this study.
引用
收藏
页码:549 / 565
页数:17
相关论文
共 25 条
[1]   Adaptive approximation of nonlinear operators [J].
Amat, S ;
Busquier, S ;
Negra, M .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (5-6) :397-405
[2]  
[Anonymous], 1971, Nonlinear functional analysis and applications
[3]  
Argyros IK, 2007, STUD COMPUT MATH, V15, P1
[4]  
Argyros I.K., 2012, Numerical Methods for Equations and Its Applications
[5]  
Argyros I. K., 2007, REV ANAL NUMER THEOR, V36, P123
[6]   New sufficient convergence conditions for the secant method [J].
Argyros, IK .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2005, 55 (01) :175-187
[7]   A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space [J].
Argyros, IK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (02) :374-397
[8]  
ARGYROS IK, 1993, PUBL MATH-DEBRECEN, V43, P223
[9]   A Kantorovich-type analysis for a fast iterative method for solving nonlinear equations [J].
Argyros, Ioannis K. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :97-108
[10]  
Argyros IK, 2011, MATH COMPUT, V80, P327