An Extreme Function Theory for Novelty Detection

被引:30
作者
Clifton, David A. [1 ]
Clifton, Lei [1 ]
Hugueny, Samuel [1 ]
Wong, David [1 ]
Tarassenko, Lionel [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX3 7DQ, England
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Functional analysis; Gaussian processes; signal processing algorithms; CLASSIFICATION; PREDICTION; SUPPORT;
D O I
10.1109/JSTSP.2012.2234081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce an extreme function theory as a novel method by which probabilistic novelty detection may be performed with functions, where the functions are represented by time-series of (potentially multivariate) discrete observations. We set the method within the framework of Gaussian processes (GP), which offers a convenient means of constructing a distribution over functions. Whereas conventional novelty detection methods aim to identify individually extreme data points, with respect to a model of normality constructed using examples of "normal" data points, the proposed method aims to identify extreme functions, with respect to a model of normality constructed using examples of "normal" functions, where those functions are represented by time-series of observations. The method is illustrated using synthetic data, physiological data acquired from a large clinical trial, and a benchmark time-series dataset.
引用
收藏
页码:28 / 37
页数:10
相关论文
共 36 条
[1]  
Buza K, 2011, THESIS U HILDESHEIM
[2]   Anomaly Detection: A Survey [J].
Chandola, Varun ;
Banerjee, Arindam ;
Kumar, Vipin .
ACM COMPUTING SURVEYS, 2009, 41 (03)
[3]   Novelty Detection with Multivariate Extreme Value Statistics [J].
Clifton, David Andrew ;
Hugueny, Samuel ;
Tarassenko, Lionel .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2011, 65 (03) :371-389
[4]   Gaussian Processes for Personalized e-Health Monitoring With Wearable Sensors [J].
Clifton, Lei ;
Clifton, David A. ;
Pimentel, Marco A. F. ;
Watkinson, Peter J. ;
Tarassenko, Lionel .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (01) :193-197
[5]  
DE HAAN L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
[6]  
Embrechts P., 1997, MODELLING EXTREMAL E, DOI [DOI 10.1007/978-3-642-33483-2, 10.1007/978-3-642-33483-2]
[7]  
Fisher R. A., 1928, P CAMBR PHIL SOC, V24
[8]  
Frank A., 2010, UCI Machine Learning Repository
[9]  
Gao Y, 2011, LECT NOTES COMPUT SC, V6495, P153, DOI 10.1007/978-3-642-19282-1_13
[10]   Sequential Bayesian Prediction in the Presence of Changepoints and Faults [J].
Garnett, Roman ;
Osborne, Michael A. ;
Reece, Steven ;
Rogers, Alex ;
Roberts, Stephen J. .
COMPUTER JOURNAL, 2010, 53 (09) :1430-1446